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Shell model for time-correlated random advection of passive scalars
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We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity
field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time
correlations are investigated using perturbation theory around the white noise limit and nonperturbatively by
numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the
passive scalaf.S1063-651X99)07711-9

PACS numbdis): 47.27.Gs, 47.27.Jv

I. INTRODUCTION (Vi(x,)vj(y,s))

The advection of a scalar observalsies,t) by a velocity
field v is described in classical hydrodynamics by the linear
partial differential equatiofiPDE)

=06(t—s)

D; j(0) —Dyg|x=y|%n(d— 1+ £n) 5 ;

(X=Y)i(X=Y);

3, 0+Vv-V 0=kV20+f. (1.2 + &un
x=yl?

If v is assumed to be the solution of the Navier-Stokes equa-

tions in a turbulent regime and thé dket number Pe, which  The power law behavior of the covariance mimics an infinite
measures the ratio between the strength of the advective gfertial range for the velocity field. The scaling exponépt
fects and the molecular diffusion in (1.1), is large, is a free parameter characterizing the degree of turbulence of
the advecting field. The physically meaningful values range
from 0 to 2. In the first limit the effect of the random advec-
tion is just to define an effective diffusion const@8}. In the
latter case the velocity increments are smooth, as expected
(L andv are the characteristic length and advection velocityfor a laminar flow. The choicé,,, equal to3 represents the
in the problem, and if a steady state is reached, an inertialscaling of the velocity field conjectured by Kolmogorov for
range sets in where both the effects of the forditimited to  the solution of the Navier-Stokes equation in the turbulent
the large scales and those of the molecular diffusion actingegime.
mainly on the small scales can be neglected. In the inertial The hypothesis of delta correlation in time is of great
range no typical scale is supposed to characterize the flonmathematical advantage, for it allows one to write the equa-
As a consequence, the structure functions of the scalar fieldons of motion of the scalar correlations in a linear closed
form. The evolution of each correlation in the inertial range
Sp(r)=([8(x+1)—6(x)]P) (1.2 is specified by a linear differential operator, the inertial op-
erator, plus matching conditions at the boundary of the iner-
display a power law behavior in the inertial range with tial range. The occurrence of anomalous scaling has been
anomalous scaling exponerigp) [1]. The word anomalous related to the existence of zero modes of the inertial opera-
means that the exponerti(p) deviate from the linear be- tors dominating the scaling properties of higher order corre-
havior predicted by a direct scaling analysis of Ehjl). lations ([3—6] and, for a recent review and more complete
It was first realized by Kraichndr2] that anomalous scal- bibliography, [7]). The behavior of the anomaly has also
ing can be observed in the mathematically more tractabl®een numerically measured for the fourth order structure
case of the advection by a random homogeneous and isotréinction versus the turbulence parameggf, [8]. However,
pic Gaussian velocity field, which is delta correlai@chite ~ implementing accurate numerical experiments still remains a
noise in time and has zero average and covariancel in difficult task. Therefore, it turns out to be useful to use the
dimensions given by shell model as a laboratory in which to test ideas and results
related to the full PDE modékee[9] for a general introduc-
tion to the shell model conceptin [10,11] two different
*Electronic address: ken@isva.dtu.dk shell models advected by a delta-correlated velocity field
"Electronic address: pmg@nbi.dk mimicking the Kraichnan model were constructed. Anoma-
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lous scaling was observed numerically and in the simpler Il. MODEL
case[11] it was proven analytically that the anomaly of the
fourth order structure function is related to the anomalous
scaling of the dominant zero mode of the inertial operator.
The passive scalar advection by a white noise velocity
field is a useful mathematical model, but is still very far from
being a physical realistic velocity field possessing both time —KmOm_1(DUr 1 (D],
correlations and deviations from Gausianity. A first small 2.1)
step in this direction is made by investigating how the intro- '
duction of a time correlation in a Gaussian velocity field
affects the statistical properties of the scalar field. Up(t)=
In the present paper we introduce a time-correlated veloc- € \/T—m
ity field in a shell model. This is done by replacing the white
noise with the Ornstein-Uhlenbeck process, which provides
exponentially decaying time correlatiofSec. I). We inves-
tigate the model both analytically and numerically. By means
of stochastic variational calculus, which we review in Ap- where the asterisk denotes complex conjugation and the
pendixes A and B, we show how to rewrite the equations ofy,(t)’s and 7(t) are independent white noises with zero
motion for the scalar correlations in integral nonclosed formmean value and correlation:
Such an operation allows evaluation of the correction to the

The model is defined by the equatioma=£1,2,... N)

d
— + kk?,

It Om(t) = S1mf (1) =i[ K164 1(DUR(L)

Vm

t
fods e (=9lemm) g (), (2.2

T ot
f(t)= —= [ ds e (9N p(s), 2.3
(1) Jrlo 7(s) (2.3

white noise inertial operator stemming from the time- (7m(D) 75 (8)) = 20mpd(t—s)  and
correlated velocity field. This procedure has the further ad- . _
vantage that it creates a nonambiguous relationship between (n(t) 7" (s))=24(t=s9). 24

thg coupling .terms for the spaling exponegy, of W_hite The boundary conditions ar@,= 6y, 1=0. The model can
noise advection to the scaling exponefitof the time- o regarded ‘as a severe truncation of the equation of the
correlated velocity fieldSec. Ill). _passive scalafl.1) in Fourier space. The field componeht

The inertial operators can be expanded around the whitg the representative of all the Fourier modes in the shell with
noise limit in powers of an adimensional parameter which is; wave number ranging betweeky,=koA™ and K. 4
interpreted as proportional to the ratoobetween the time =k \™*1 The parametek is the ratio between two adja-
correlation and the turnover time of the advecting field. Wecent scales and it is usually taken equal to two in order to
focus on the features of the steady state. There we assunentify each shell with an octave of wave numbers. The
that the averages over the Ornstein-Uhlenbeck process of athergy transfer in a turbulent flow is conjectured to occur
the observables are time-translational invariant. As a consemainly through the interactions of eddies of the same size.
qguence, the inertial operators become linear up to any finitds a consequence the interactions in Fourier space are as-
order ine. sumed to be local. The “localness” conjectufg] is the

In the white noise case, whenis equal to zero, we gen- Mmotivation for the restriction to nearest neighbors of the cou-
eralize the procedure first introduced [ibl] and we show Pplings among the shells.
that the scaling of the zero modes of the inertial operator of [N the absence of external forcing and dissipation, the
any order is captured by focusing on nearest-shell interadotal “energy” of the passive field is conserved:
tions. The equations are closed with a scaling AngSezc.
IV) by postulating that the scalar field is “close” to a mul- EE=
tiplicative process. Furthermore, we perturb the closure dt
scheme in order to extract the first order correctionsg o
the anomalous exponents for different values¢afanging
from zero to two. The prediction of perturbation theory is an
e dependencénonuniversality of the exponents except for

| o

N
> |6,2=0 for f(t)=«k=0. (2.5
m=1

o

t

Far from the infrared and the ultraviolet boundaries., for
1<m<N) the conservation of energy is expected to hold
approximately, giving rise to an inertial range. Equations
; (2.2 and (2.3) describe the random evolution according to
the second ordet(2) (_Sec. V. The overall result IS an_alo- Ornstein-UhlenbeckOU) processes of, respectively, the ad-
gous o the one ot_)tam_ed [r12_], where a Gausma_n time- vecting and external force fields. The OU process has differ-
correlat_ed vglocny field is c9n3|dere(_j for th? advection 9f theentiable realizations, thus resulting in the random differential
scalar field in Eq(1.1): the introduction of time correlation equations with multiplicative noise that specify the dynamics

is seen to enhance intermittency. The anomalies vanisf ihe scalam independent of the discretization prescription.

smoothly in the laminar limig=2. _ The velocity correlations are fdaes

To examine the validity of the results from the analytical
calculations and explore the regime with long time correla- N IVl ? = (er)  am(t )i (ern)
tions (e=0), we turned to numerical experiments. The oc-  (Um(D)Um(8))=—"—(e m—e m).

currence of corrections to the anomalies predicted by the (2.6)
perturbation theory for small values efis confirmed. How-

ever, strong nonperturbative effects set in and dominatén the limit of larget only the stationary part survives. The
when the expansion parameter becomes of the order of unitpdimensional parameter appearing in the definition of the
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OU processef2.2) and(2.3) defines the strength of the time
correlation in units of the typical times,,. In the white
noise limit one has
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The complex equation€.10 are invariant under phase
transformations. Given two diagonal HermitiaN & 2N ma-
trices with time independent random entries

, t—s T=diage'?s, ... g% e %1 e ¥ (212

lim (U (D)UE(S)) = 2] vy 28] — . 2.7

€l0 Tm SEdiage*i(%*%), . ’e*i(¢’N—1+¢N),O’ei(¢1+¢2), o
For any finitee ordinary differential calculus holds true: the el(dn-17¢n) ), (2.13

consistency conditions yield a Stratonovich discretization

prescription where is set to zero and the recovery of the if © is a realization of the solution of the equations of mo-

white noise advection model ¢1.1]. Hence the factor 2 in tion, then

(2.7) always cancels in computations for thelistribution is

evaluated at one of the boundaries of the domain of integra-

tion. ) ) i is still a solution. The phase symmetry is the remnant of the
Information about the scaling of the correlations of the{ ansiational invariance of the original hydrodynamical equa-

velocity field at equal times is stqred in the constanis tions in real spac¢9]. From the phase symmet(p.14) it

We assume the power law behavior follows that at stationarity the only analytic nonzero mo-

ments of the correlation are of the form

®mi®N+mi>E<Hiw:1

TO(U)=0(SU) (2.14

|Vl ok 2. (2.9

)
i=1

2
Kolmogorov scaling is specified bgy=2/3 while £&=2 cor- |0mi| )
responds to a laminar regime. Thg's in Eq. (2.2) describe (2.19
the typical correlation times for the random velocity field. A | the inertial range such quantities display a power law be-

simple physical interpretation is to identify them with the payior. The diagonal sector of the moments whose scaling
turnover times, i.e., with the typical time rates of variation properties are specified by the exponef{Qw)
through nonlinearity of the advection field on each shEd:

(2.1

is in the shell model context, the analog of the structure
functions(1.2) of the original PDE mode(1.1). The expo-
The scaling of the correlation times is then fully specified innentsH(2w)’s are said to be normal if they can be derived
terms of the parametef. It is worth noting that for any¢  from dimensional analysis. Under the assumption that a
less than 2 ther,,’s are always decreasing functions of the steady state is reached, one matches the scaling of the inertial
wave number. terms in Eq.(2.1) with a power law decay of the solution

The evolution of the scala# is determined in the inertial
range by its complex conjugate. It is useful to introduce a (2.17)
unified notation for the R degrees of freedom. Wit = 6 . Lo . .

" - * The resulting prediction is a linear behavior of the exponents
® 6* andU=u@u* one has for thé\ shells : o

versus the ordew of the diagonal correlation:

.

d 2N
a2 [ 13

The scaling argumeri.17) neglects completely the random
fluctuations of the passive scalar field. Normal scaling holds
if the statistics of thed field are Gaussian. Deviations from
normal scaling are then correlated with the occurrence of
intermittency corrections to the Gaussian statistics. A sys-
tematic account of the fluctuations is provided by the study
of the equations of motion satisfied by the moments of the
scalar field.

ook L) (2.9

o~
™ K| Vil

Kt 1K &2 01— Kk 2 61~ 0.

2N

A st 21 B2 Uy @ s+ 8,1+ 8 ni1,
=

(2.10

(2.18

H(2w)=w(

with
— 2
Am,ﬁ_ - Kkmﬁm'ﬁ y
AN+m,ﬁ: - Kkzmam,n )

BE,B: —ikmial 5,8,m+15a,N+m_ 5ﬂ,m5a,N+m+l]1

Bg:;;m: iI(m-¢—l[ 5B,N+m+15a,m_ 5B,N+m5a,m]v (21:D

where Latin and Greek indices range respectively from 1 t
N and from 1 to N. The set of matrices with constant en-  In the white noise limit,e equals zero; the Furutsu-
tries BY do not commute within each other and with the  Donsker-Novikov formula[1] and the delta correlation in
matrix. The known sufficient conditioisee, for example, time of the velocity ensure that the mome@i<®) are speci-
[14]) to have a solution of E¢2.10 in an analytic exponen- fied by the solutions of closed linear systef,11. In the

tial form is therefore not satisfied. From the geometricalpresence of finite time correlations, stochastic calculus of
point of view, noncommutativity means that the dynamics isvariations[15,16 allows one to write nonclosed integrodif-
confined to a manifold that turns into a hyperspher€'tin  ferential equations for the correlations. A typical functional
the inertial limit (2.5). integration by parts relation is

OIII. EQUATIONS OF MOTION OF THE FIELD MOMENTS
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t
(FO)Unsn(0) = | 05(Unsn(U()
d

where Einstein convention holds for repeat@tekindices.
The matrixR is the fundamental solution of the homoge-
neous system associated with E2,.10. A heuristic proof of
the stochastic integration by parts formula and of &dl) is
provided in Appendixes A and B.

Let us start with the second moment of the scalar field,

dF(O(t)) .
WRa,B(t,S)BB,y®y(5)>,

(3.

CR()=(On(

DON+m(D)=(On(D) O(1)). (3.2

From the equations of motiof2.10 one has

d 2 2
gt T 2¢K0 | CRA) =2 RO (D (1))} 81

d

=2 qukm+l<uN+m(t)®N+m+1(t)®N+m(t)>}

=2k RE[I{(Un1m—1(1) O N m—1(1) O m—1 (1))}

(3.3
The integration by parts formul@.1) gives
d 2| ~(2)
dt+2Kk Cy'(t)—26,,Re ds(f(t)f (s)*)
X(Rn+mn+1(1,9))
Un(tu S
2kﬁq+l7'mf d < m() N+m( )>D ]__I(ﬁ)(tys)
Tm
U U _1(s
_2k27_m 1Jd< m— 1 ) N+m 1( )>
Tm-1
xReF2) (t,s), (3.4)
wherem=1, ... N, Re is the real part, and
Fss)(tis).:Gf\lzlm+l,N+m;N+m,m+l(tvs)
_G§\|2-?—m+l,N+m+l;N+m,m(trs)
+G§\|2-?—m,N+m;N+m+l,m+1(tys)
GN+m N+m+1N+me1m(LS), (3.9
Gf\lzlm,N+n;N+p,q(tys)
2N
= 2 (Onip(ORN s m i 1a(LOR, N 1n(S0/04(9)),
(3.6
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A= V| 27k, (7 E2) (3.7
When a steady state is reached, the left-hand #idieof Eq.
(3.4) can be neglected through the whole inertial range. The
rhs specifies the inertial operator of the theory. A further
simplification is attained in the limit of very large shell num-
ber. For any¢ less than 2, one has

(Un(Unim(S)) - (Un(DUR(S))
m =1m T—

Tm m

= |Vm|25(t_s)
mToc m{ o

(3.8

independently ofe. At equal times the resolvent matri
reduces to the identity. From EgR.8) and(2.9) it follows
that

K2, 1dm7m=\2. (3.9

Hence form going to infinity the inertial operator is linear-
ized in the form

C(Z)) 2 (C(Z)_C(Z) ).
(3.10

The slowest decay scaling solution compatible with a zero
Ihs is

l(C)= 2 (cafll—

Tm-—

(3.11

In other words, we have proven that the scaling of the second
moment is normal since it coincides with the dimensional
prediction(2.18. Moreover since the result does not depend
on e, it is universal versus the time correlation. It is worth
stressing that the derivation of E(R.11) requires that each
of the terms appearing in E@3.10 has separately a finite
nonzero limit form going to infinity. The condition turns out
not to be self-consistent when the same reasoning is applied
to moments higher than the second.

An important consequence of normal scaling of @f@’s
is the Obukhov-Corrsirf17,1§ law for the decay of the
power spectrum’(k) of the passive scalar if the Kolmog-
orov scaling is assumed for the advecting field:

C@oc 7=k H®.

/3

(3.12

A second interesting limit is whemr tends to zero. Ne-
glecting all nonstationary contributions to the velocity corre-
lations the rhs of Eq(3.4) becomes

r(k)—a< 2, ((6u07)7) k(O]

c@ _

1(CP)=2KZ, 1dm(CEL, — CP) — 2K din— 1 (CE - CR) )

d
2k2+1d f dse (t— S)/(ETm)d_Ref(z)(t S)

t d
+ k?ndm_lf dse (" 9em) S ReAD (t.5).
0

(3.13
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If €is set exactly to zero the integral terms disappear and thdiagonalization, any analytical approach must rely on closure

white noise equations ¢fL1] are recovered. The information
about the scaling of the velocity field is absorbed indhés.

Anséze first to solve the white noise problem and then to
yield the corrections to the zero modes by linear perturbation

In a pure white noise theory it is convenient to redefine thetheory.

turbulence parameter as

=1+

&wn (3.14

N | ove

A Kolmogorov scaling of the velocity field corresponds to
&,n €qual to3, which is also the value giving the Obukhov-
Corrsin scaling in Eq(3.12. The two definitions of the de-
gree of turbulence coincide faf equal to two(Batchelor
limit). It is natural to identify¢,,, with the turbulence param-

IV. WHITE NOISE CLOSURE

In this section we present a closure strategy to compute
theH(2w)’s in the case of white noise advection. As shown
in the preceding section, the second diagonal moment is nor-
mal and universal versus the time correlation. The first non-
trivial zero mode problem is provided by the fourth order
inertial operatod (49, In [11] it was shown that the anoma-
lous exponenpy,,

eter of the Kraichnan model. The correspondence fixes the

physical range of between —2,2].
In the general case of thes2h even moment of the scalar
C(?¢) one has

------

© t
+> Zkﬁq_dm_,lJ’ ds & (~9tern - L
=1 i o ds

...... m-1,...m,(6S): (3.15

The multidimensional matrix(?“:% is the linear inertial op-

erator of the white noise theory. The integrand functions

____ mm(t,s) are given by the straightforward

generalization of Eq.3.5). The lhs, as above, is set to zero as
far as the steady state features of the inertial range are co
cerned. Repeated integrations by parts in the ldrgmit
generate a Laplace asymptotic expansj@f] of integral
terms in the rhs, the coefficients of which are the derivative
with respect tos of the functionsF() evaluated at equal

times. When the steady state sets in we assume the latt

guantities to be invariant under time translations for large
Under such an assumption it will be proven in Sec. V that th

equal time derivatives are specified at equilibrium by linear

combinations of theC(?®)’s. The effect of a small time cor-
relation is therefore to generate new couplings of ordéer

the inertial operators. The observables we focus on are t o

scaling exponents. As discussed in the introduction, anom

e (2) “Purely local”

H(4)=2H(2) - p4, 4.9

can be extracted up to a very good accuracy from the solu-
tion of only two nonlinear algebraic equations. The station-
ary equations foiC® in the inertial range far from the in-
frared and ultraviolet boundaries are given by

(4:0) ~(4)
_ Im,n;pxqcpxq
2\?
1 1 1 1
=—|—+ +—+ )C(“)n+—c(4) N
Tm Tm-1 7n Th-1 ' m '
+—Clhhiat Cint Cln1
Tn -1 ' n— '
Cimer | Chmea S
+2 : . -2 :
5m,n< = 1 Sm+1n ™
-1
260 m 1 4.2
Tm-1

One recognizes two kinds of couplingsliffi?), ;.
(1) “Global,” or “unconstrained,” interactions. The in-

?icesp and g range respectively froom—1 to m+1 and
r

om n—1 to n+1. The couplings are independent of the
lative values ofm andn. In this sense they are referred as
global.
interactions. These occur only fom
n|<1 and correspond to the terms proportional to the
Kroeneckers in Eq. (4.2).
Anomalous scaling in the inertial range is strictly related
the presence of such purely local interactions. Were these
atter neglected, the fourth order moment would have a nor-

lies occur in the presence of nontrivial scaling zero modes off@l scaling solution
the white noise inertial operators. It makes sense to relate the

e dependence of the anomalous exponents to a perturbation

of the scaling zero modes derived fer=0. A straightfor-
ward approach to the problem calls for the solutionNdf

Th
2
o« — 72
Tm

ct, 4.3

linear equations. A further source of difficulty is that exactThe idea is to capture the anomalous scaling by looking at
determination of the zero eigenvectors of the inertial operathe “renormalization” of global couplings by pure short

tors of any given order requires the matching of infrared andange ones. Disregarding the boundaries, the system is in-
ultraviolet boundary conditions. In the absence of an exacvariant under a simultaneous shift of the indices. Hence, as-
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suming a perfect index-shift invariance there are, forrtle ~ OPE or short distance expansion. The prescription is to re-

shell, only two independent equations whetdike terms write the product via a Taylor expansion in terms of local
occur: composite operators sampled just at one point. Such a point

is now well separated from all the others appearing in the
correlation function. The original correlation is replaced by a

0= Ifﬁ}ﬂ?p’qu}%, set of correlations such that RG applies provided an extra

P4 renormalization, renormalization of composite operators

(RCO), is introduced. The latter is understood by observing

_ (4:0) (4) that in our example the first term in the Taylor expansion
o—% 1 0qCY (44 Gives

2
The third equation involving a purely local interaction of the Px+dx) $(x=dx)~ $(X)".
mth shell with its nearest neighbors, The mathematical meaning of a field is one of an operator-
valued distribution. The product of two distributions at equal
: points, i.e.,¢(x)2, requires a regularization before the cutoff
0:2 'Er?iol)m'p chlt)q* is removed in order for it to make sense as a distribution
P.q e . ) . :
This is the content of the RCO. Finally, at leading order the
is generated from the second of E¢g.4) by a simple index relationship between the renormalized quantities reads, for
shift. Therefore, it is not regarded as independent. The paithe above example,
(4.4) contain all the relevant information needed to extract
the scaling of the fourth moment. It forms a closed system of ([#(X+dX)(x—dX)]r-- S~ e(dx)([ ()] - -).
equations independently on the shell numbeas one im- (4.

poses scaling relations to hold within the set of “indepen-roughly speaking, the small real space separations are asso-

dent” moments of fourth order: ciated with the UV behavior of the Fourier conjugated vari-
able. In the shell model context thg, are representative of

(4.5  the scalar field variation over one octave. The moments

4 R 4
anJ)rn,ern_z nCEn,)mv

Cﬁr‘t)mm correspond to the average of the product of squared
Cﬁfln,m=XkE—H1(2)Cﬁi)my 4.6 increments of the scalar field at different wave numbers
(4) _ 2 2
where the integen is taken larger than zero. As in the analy- Conmin (¢ (Kmn)“b(Kn)%),

sis of the interactions, the concept of independence stems

from the assumption of index shift invariance: the moments ¢(km)~< f dPxe* X[ o(x)— 0(0)]R>
of the formCEﬁ'Zn’m are immediately reconstructed once Eqgs.
(4.5 and(4.6) are given:

Ko< K| <N

Equation(4.6) states then that scaling is restored for large
shell separationg going to infinity, i.e., spatial scales much
cW =xk H@zc® smaller thark,') independently on the smaller wave num-
’ ’ berk,,. The analogy with the OPE is then summarized by

Let us analyz_e the closure Ansatz in more detail. ;I'he first "mf dPy eikn~yc(y)ka;_l-|{2)’ 4.8)
equation(4.5) is a global scaling assumption of the “diago- nteo

nal” sector of the fourth moment. Its justification lies in the

very definition of an inertial range. The second scaling aswherex is a renormalized constant. The insertion of the scal-
sumption relates the diagonal sector to the nondiagonal oneg Ansatz in Eq(4.4) leaves a nonlinear system in the un-
via a marginal scaling. It is analogous in the present contextnown variablesz andx. By applying the definitiork,=\"

of an operator product expansid®PE in statistical field one gets
theory [20]. There, renormalization groufRG) techniques

are able to describe the scaling behavior of correlations of

fields sampled at large real space distances one from th?l_i_z))\fH(g)_i_xz(_1_3)\7H(2))\72H(2)+z)\73H(2)):0,
other. If an observable requires the evaluation of a correla- 4.9
tion including the products of one field in two points at short '
distances, i.e{(x—dx)d(x+dx)---), the RG procedure which, after straightforward manipulation, providess the
cannot be directly applied. The problem is overcome by arphysical root of a second order polynomial

—1-N"H@42x(1+20 " H@) =0,

1+2)\_H(2)+2)\—2H(2)+)\—3H(2)+ \/1+4)\_H(2)+8)\_2H(2)—6)\_3H(2)—4)\—5H(2)+)\—GH(Z) .
- 2(2\2H@) 4 )\ ~3H(2) 4 )\ ~4H(2)) } (4.10




PRE 60 SHELL MODEL FOR TIME-CORRELATED RANDOM.. .. 6669

0.2 T T - T T T - constants does not necessarily imply the nonrenormalizabil-
0 £=3 ity of the real space theory mimicked by the shell model
) : [21].
o 0.2 More concretely, the diagonal scaling exponent of the
| sixth moment = 3) of the scalar field
- -04
~ 6 _
gu| 0.6 CE’n,)n,p:<N+m®m®N+n®n®N+p®p>=<|0m|2|0n|2|0p|2>
L0 (4.12
= -0.8 according to the above criterion requires four independent
-1 [Theoretical points o equationgsee Appendix P
Numerical values —=—
-1.2 e -
o 1 2 3 4 5 6 7 8 9 > Hmp.arChar=0,
p p.q.r
FIG. 1. Analytical prediction for the anomalous part of the scal- 2 1(6:0) c® _g
ing exponent compared with the results of the numerical experi- o m,m,m—=21:p,q,r~p,q,r
ments for different values of the turbulence degree paranéeter " .13
Kolmogorov scaling of the advection field correspondste2/3. '
The dash-dotted line represents tfttBmensional normal scaling > |§§;‘3)_ 1vm_1;p‘q’,Cé6’ler=0,
prediction. The continuous line interpolates the exponents as ob- p.a.r
tained from numerical experimerisquares The circles are the
analytical prediction from the closure Ansatz. E (6:0) c® —o
m,m+1m-1;p,q,r~p,q,r- -
p.q.r
In terms ofz, the anomaly is The OPE-inspired closure yields
6 I PN
C§113—n,m+n,m+n_z Cr(n,)m,m'
_ Inz (©) _ ¢ k-H@®E(6)
pa=2H(2 _m (4-1]) Cern,ern,m_Xlknfl Cm,m,m*
(4.19
6 —y L~ H(2),—H(4)~(6
CEn-?—n-%—p,m-%—n,m_XZKp—]s )kn—f )Cl(’n,)m,mv

and it proves to be in fair agreement with the values obtained ) _H(2)(6)
from the numerical solution of the exact equati¢h<) [11] Ciinmm=X3Kn 1 Crymm-
and from the numerical integration of E¢R.1) for all the
values of the turbulent exponeétn the physical rangésee
also Figs. 1 and )2 The sign ofp, is always positive: the
effect of the anomaly is to decrease the diagonal scalin

Inserting the OPE in Eq4.13, one gets into the algebraic
system for the unknown renormalization constants
éxl,xz,xg) and the diagonal scaling factar

exponent. . . , —1+N\*(—1+32x)+3x3=0,
The procedure presented in detail for the computation of
the fourth order exponent is straightforwardly extended to —N29zx;+ N4 Paz2x — 27(X, — 2X5)
any higher order moment when one recognizes that, in gen-
eral, two crucial observations hold. FNTL+2z(—=7x;+4X3)]=0,
(1) In the absence of pure short range couplings, the nor- (4.19
mal scaling prediction holds true far from the boundaries for N(1+ 4%, 6X3) + N (42X~ 2X3) —X3=0,
the zero modes of the inertial operators of any order 2 . N T
(2) For any fixed shelin, there is a one-to-one correspon- AZETPAZX + N Z(X = BXp) = 2X+ NP4z,
dence between the number of independent equations and mo- —A39Z(Xy— X3) + N2%(— 42 % + X5) =0.

ments of order @.

In the case ofC**) there are 2~ ! equations: for any  After some algebra, Eq4.15 reduces to a single third order
fixed reference shelh,, the interaction with the second in- polynomial specifying the physical root af It is worth re-
dexm; is affected by a pure short range coupling if the lattermarking that from the functional dependence of the coeffi-
is equal to or one unit different fromm,, i.e., there are only cient of Eq.(4.15 the exponentH(6) depends upon the
two possible choices, and so on until theh index is  anomaly ofH(4). Once again, the anomaly evaluated from
reached. On the other hand? 2 is the number of exponents
that characterize the scaling of theth moment. The An- Inz
satz is that the marginal scaling of the nondiagonal sector is pe=3H(2)~ Inx (4.16
fully specified in terms of the diagonal scaling exponents of
order less than @. By means of the OPE’s, one is able to is in fair agreement with numericsee Figs. 1 and)2for
close the zero mode equations in terms 6f 2 unknown  different values of.

renormalization constants amt{2w). Analogy with a field In Appendix E, the same steps are performed in the case
theoretical OPE shows that the need for an infinite set obf the eighth momerﬁ:fﬁy’n'p'q. The analytical predictions for
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2.5 V. PERTURBATIVE ANALYSIS
Let us now turn to the time-correlated case. The idea is to
2 Py evaluate the scaling behavior of the dominant zero modes of
the inertial operator$3.15 linearized up to first order i
1. *

by perturbing the white noise closure Ansatz.
The first order corrections iato the inertial operators are
obtained by truncating the integration in parts to the terms

linear ine:
0.
2 Y d 2w)
2kh, +10m, foe (t=3)/(emm,) d_sRef(m;j o (69)
icti oo ) d 20)

FIG. 2. Prediction of the closure Ansatz for the anomalies in the =2e\ d—Ref(ml“j m m (t,9)|s=t
scaling exponents of the fourtlp,, the sixth,ps, and the eighth, s : ©
ps, moments of the scalar field versus the turbulence parargeter + O(Ez’ee_t/(ﬂm‘))_ 5.

In all cases, the anomalies are a decreasing functio& gbing
smoothly to zero as the Batchelor linditequal to 2 is approached.

The anomaly of the eighth moment is obtained as the numericathe use of Eq.3.9 in the rhs stresses that the effective

solution of a sixth order polynomial. adimensional expansion parametegis’: the range of reli-
ability of first order perturbation theory is compressedeto
the anomalous exponents are summarized in Fig. 2. In afEA~%/10. As mentioned in Sec. Ill, in the limitgoing to

cases the anomalies are decreasing functions of the turbiffinity, one expects the time quantities to be stationary. In
lence parametef vanishing smoothly when the laminar limit Such a case, the derivative with respect to the varialien

(£ equal two is approached. The anomaly of the fourth orderP€ interchanged WI'['h the denvapve with respect &md one
moment can be compared with the results of numerical exc@" Use the equations of motion to evaluate EQl). A
periments for the fourth order structure function of the Kra-diréct differentiation with respect teis consistently taken

ichnan mode[8]. There, the adopted turbulence parameter iSwith respect to the system of stochastic differential equations

&wn - For values of¢,,, of order one, i.e., from the Kolmog- conjugated py time reversal Of. equatio(®1)—(2.3. The
. o . latter operation in general requires knowledge of the prob-
orov scaling up to the Batchelor limit, one indeed observe

: . . ) bility density of the forward in time problem. In the station-
the same monotonically decreasing behavior with values o

h v of th h ; in the sh ry limit, the time reversal operation for the OU process
the anomaly of the same order as those found in the shefy,ces to the inversion of the sign of the drift term as in the

model. For lower values &, the anomaly in the Kraichnan - geterministic case. After slightly more lengthy algebra, the
model displays a maximum before decreasing to zer@far  result is equal to the differentiation with respect ttevith
equal to zero, i.e., whed tends to—2. No sign of such  gpposite sign.

behavior is observed in the shell model. The discrepancy The computations in the general case are very cumber-
might be an artifact of the shell model, which was originally some(see Appendixes C, D, and) Bt is convenient to ex-
designed to mimic the supposed local-in-scale character afmplify the procedure in the simpler case of the second order
the nonlinear interactions in a turbulent fl¢@] and fails to  correlation. There are four contributions to R&:

describe a regime where strong nonlocal effects become im-

portant.

On a phenomenological level, the energy transfer in the EG(z) (t,5)];_=0
inertial range of the turbulent field is related to the occur- dt —NFmELNFmNEmmE 1R AEs
rence of a cascade mechanism, as conjectured by Richardson
[22]. The conservation of energy in the inertial range im-
poses that the force occurring on large real space scales is i
transferred to small scalése., large wave numberdefore dt
dissipating. A mathematical description of the cascade is B ) @) .
provided by multiplicative stochastic proces$es]. Multi- == kK51 Cr (1) +(Ony (D) O (1)),
plicative modeling has been shown to account for most of (5.2
the features observed in real and synthetic turbulé®4ed)]. d
In the present case, the idea of a multiplicative structure is —G® _ (t,)]i—s=0,
incorporated into the hypothesis that the scaling of the non- dt ~NFmNFEmeLNEmmed s
diagonal sector of a given moment of orde® 2s recon-
structed once the scaling of the lower moments is known.

Such an assumption, together with the analysis of the cou- EG(z) (t,9)|
plings in the inertial operator of order«? yields with fair dt —NFMNEmMNEmELmE L=

accuracy the scaling exponents of the model without having 2 ~(2) .

to resort to an exact diagonalization of the inertial operator. == kKGCR (D) +(Onsmr 1 (DO i1 (1)),

2
Gg\l-%)—m+1,N+m+l;N+m,m(t!S)|t:s



PRE 60 SHELL MODEL FOR TIME-CORRELATED RANDOM.. .. 6671

FIG. 3. First order corrections tbl(4) with

z o (dashed ling and without inclusion of second
z4731n () neighbor interactions are plotted versus the turbu-
-0.6 lence exponent. The inclusion of second neighbor
couplings increases the intensity of the anomaly.
-0.8
0 0.5 £ 1 1.5 2
By definition 2, such a strategy is already able to take into account the
corrections due to the purely second neighbor interactions.
_ 1d Let us analyze in more detail the caseGif),. The white
(Onem(t)Om(t) =7 a<|9m(t)|2>' noise closure is perturbed by introducing ardependence
into the renormalization constants
: 1d 2 @) —(e)-"C@
<®N+m+1(t)m+l(t)>:§a<|0m+l(t)| ). Cm+n,m+n_z(6) Chm» (5.3

CW | m=x(en,H2c 5.4
The time derivative of R&) , is derived by a simple index menm= X1 Cmm ©-4

it St e s a1 e EEOURIACSS e g ssin nth oo scrin 5
: P 9ssumed to stay universal as it is fof?) while the e depen-

by first order perturbation theory. The res_ult is not surprising.derlce is stored in the prefactor. The diagonal exponent is
The second moment has only one free index. Hence at WY on determined up to first order.as

order of perturbation theory only global coupling can be gen-
erated, which is forced by the symmetries of the model to be
consistent with a normal scaling of the zero mode. Moreover, H(4,e)= @ + e)\z—z
the ®,, components of the scalar evolve only through the ' In(\) A2zIn(\)’
coupling with their complex conjugatddly . ,,'s: their varia-
tion is a second c_erer effect in The only pOSS|bIe NONZEro \uherez' is the derivative of at e=0 yielded by the pertur-
corrections are viscous and can be consistently neglected. pative solution of the system

Let us now draw the general picture wheris larger than
one. Once again, the phase symmet(244), and the fact
that when R&FG) . is known all other terms are % [0 o+ el JJCR(€)=0,
yielded by index shift or exchange operations, prevent the ’
corrections to the global couplings from affecting the scaling
properties: the resulting global sectors of inertial operators 2 [|(4;0) by @
have a normal scaling zero mode. This is in agreement with g5 - mm-Llipgn EImmeLlipap.g
the observation made if12], where the dependence of the

scaling exponents on the time correlation for generalizedrhe correction top, due to time correlation increases the
models of passive scalar advection is predicted to appegnomaly leading to a slower decay of the diagonal moment.

only through anomalies. The corrections to the purely shorfqy negativez’ (see Fig. 3the overall anomaly is
range couplings are therefore the relevant ones. They occur

in two ways. On one hand, new terms of ordeshow up in |
the purely self- and nearest-neighbor interactions. On the pae)=(2—&)— n(@)
other hand, terms proportional @ni m;+2 appear. The latter In(\)

are the most dangerous, for they in principle perturb the logic

of the white noise closure by introducing new independentn the range of reliability of first order perturbation theory
equations, hence the need for more renormalization constantise effect is very small: foeN?~0(10 1) the prediction is

in the nondiagonal sector of the moments. Nevertheless, orge correction amounting to the 3% of the white noise expo-
can arguea priori in the spirit of the renormalization group nentH(4). Theperturbative scheme just proposed does not
[25], only the nearest neighbors interactions are relevant forake into account the emergence of pure second neighbor
scaling. Hence first order corrections can be obtained allowinteractions. In order to weight their relevance for the diag-
ing an e dependence in the renormalization constant of theonal scaling and simultaneously to check the hypothesis of
white noise closure and determining the first order coeffinormal scaling for the marginal scaling in E§.4), one can
cient of their Taylor expansion. Moreover, farlarger than relax the closure in order to encompass the equation

!

(5.9

(5.9
(e)=0.

z"

+| en? 5 .
N zln()\)‘

(5.7)
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FIG. 4. Renormalization constanf(0) is plotted versug. It
remains _close to one_through the entire p_hyS|caI range, Proving o\ 5 First order correction tbl(4) (continuous ling H(6)
self-consistent the conjecture of normal scaling for the nondiagonal

:fde(S) versus the turbulence parameferin the last two cases

sector of the fourth moment. The result stresses that the renormaﬂ-1e corresponding linear systems are solved numerically. In all

ization of nearest neighbor interactions provides an accurate frame- ] . . . .
work in which to extract the scaling exponent cases the corrections are derived by perturbing the white noise clo-
g exp ) sure renormalization constants. The effect of time correlation is

seen to add a negative correction to the scaling exponents, high-
2 [|§T£]1’;rg)_2;p‘q+ 6'5&%)—2;p,q]cg,1¢)q(f):0' (5.9 lighting an increase of intermittency.
p.q
P2, - The corrections increase with, the rate of growth
éoeing slightly slower than thA(2w)xw(w—1)A(4)/2 pre-
dicted in[12] for time-correlation-generalized PDE Kraich-

which describes the independdirt the sense stated abgve
second neighbor interaction. Consistency with the whit
noise theory compels the latter equation to decouple when

is set to zero. The requirement is satisfied if the closure i§an models. _ _
chosen in the form Within the range of first order perturbation theory, the

overall effect of time correlation is seen to enhance intermit-
CH), m=x(e)q(e)ln-Dm=202 - —H(2)cl) . tency. An intuitive understanding of the phenomenon might
(5.9 be obtained by interpreting the time correlation as a mecha-
[(n—1)(n—2)]/2 ) nism by which to increase the probability of coherent fluc-
The prefacton(e) '~ forcesq(0) to be a function v ,a4i0ns of the scalar field. The latter are rare events felt in
of the white noise renormalization constants. Were the whitg, (il of the probability density of the scalar field as ex-

noise c.Iosure exact, it would fix the value gf0) to one.. treme deviations from the Gaussian behavior of the typical
In Fig. 4 q(0) is plotted versus: through the entire events

physical range it stays close to one with a maximal deviation
on the order of 4% fog equal to—2. Moreover, as shown
in Fig. 3, the time-correlation-induced correctionHidg4,e)
when Eq.(5.8) is included has the same qualitative behavior
and is quantitatively very close to the nearest neighbor pre- Resorting to numerical experiments has a double motiva-
diction. The result is am posterioricheck of the robustness tion on one hand, they can be used to test the predictions
of the closure approach. It confirms that first order correcy o the first order perturbation theory. On the other hand
tions can be extracted within the Iogical SChe_m? of the Zer(?hey provide a broader scenario of the features of the modél
zgg;sog?' tLtef?::g\rAtliZItZ?etrg(taofiﬁtr;%ninS[t)r?glfs),/iTt?\ tr?]irﬁirnq{)eyond the_grasp of perturbative appr(_)ac_hes. The first task is
(see Appendix Dcan be closed by assuming ar _from being easy because a quantitative check pf pertur-
bation theory requires measurements of the scaling expo-

VI. NUMERICAL EXPERIMENTS

c(6) =z(e)~'c® nents within an accuracy smaller than 2%.
m+n,m+n,m+n m,m,m? . . . . .
The main feature of the inertial range is the conservation
Ccl® =Xk, H#ac® of the scalar energy. From the analytical point of view, this is

(5.10 seen in the noncommutativity of the terms associated with
the multiplicative noiseB” in Eq. (2.10. This property rules
out the use of a simple Euler scheme, which can be applied

cl® =Xk, HAcO in the case of delta-correlated noise. In the case of white

T T noise advection the multiplicative structure of the noise Eq.

The exponenH (4,¢) is known perturbatively from Ed5.5,  (2.10, which is interpreted in the Stratonovich sense, can be

while H(2) is universal. With the same rationglppendix  mapped into the corresponding kguations. The advantage

D) one can evaluatkl(8,e). is that the diagonal nonzero average part of the noise is ex-

In Fig. 5 the analytic predictions for the corrections to theplicitly turned into an effective drift ternj26]. The nondi-
scaling exponents are summarized. In all cases the correagonal terms in the Taylor expansion of the scalar fldre
tions are negative, i.e., they carry a positive contribution toof the order three halves idt, which are neglected in the

c®)

—H(2)},—H(4.€) ~(6
m+n+p,m+n,m:X3(e)kp_l( )kn—l( 9c®)

m,m,m,m?
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FIG. 6. The convergence of the sixth order structure function for . )
e=1. Shown is(| 8%])(t) for m=8. The fast upward changes and  FIG. 7. An example of the scaling of the structure functions for

slow downward relaxations reveal the intermittent nature of the¢=2.0. The pJ'ot shows the structure functions normalized by the
signal (9%:8(0. fitted scalingkm(p) to make the scaling regime appear as horizontal

lines. The lower line is fop=1, and the upper line ip=8. Each

. . line is offset to make it possible to distinguish the lines from each
Euler scheme. This procedure becomes meaningless for fner.

time-correlated noise. There, ordinary calculus holds and in
the Taylor expansion 06 both diagonal and nondiagonal 10-9 This choice ensures that there are several shells in

products_of the noise are of the same ordedin Moreqver, _ the dissipative range. We focused on the results fequal
the algorithm to be used must tend smoothly to a white NOIS@K olmogorov scaling

limit, so that the same relative error is preserved indepen-

In Fig. 7, the normalized structure functiofi®®|)kH(®
dently of the value ok. 9 il Yk

. . are shown. The quality of the scaling is demonstrated by the
Following Burrage and Burrad@7], a reliable way out of ¢3¢ that the moments show scaling over a wide range of
the stated difficulties is to adopt the Trotter-Lie-Magnus for-g.oioo

mula to integrate the equations of motion to first order. For — o summary of the numerical experiments is given in Fig

each time mcre.memit, Eq. .(2'.1@ IS so!ved n expongnhal 8, where the scaling exponents are plotted versus the order of
form. Fast matrix exponentiation algorithms are provided bythe moments of the scalar field for different valuesoft is

the packageExpokIT [28], . evident that the anomaly grows as the time correlation in-
To generate the correlated noise, the exact method d%’reases

scribed by Miguel and Tordl29] is used. This method en-  \\hen tyrning to the interpretation of the results in more

sureﬁ, that the nloise Iis accurate down to tne lienit0. cﬂetail, the uncertainty in the extraction of the scaling has to
The time scale relevant to measuring the convergence g yent in mind. For the sixth moment this uncertainty turned
the solution is the slowest time scale in the system, namely, 15 be on the order of 4%. The changes in the scaling

the eddy-turnover time of the first shell estimated as thebetween different values aof is also on the order of a few

maximurm betweerer, and ry. As shown in Fig. 6, more o cont This seems to exclude a proper resolution in the
thanN, =10 OOO.eddy-turnoyer times are needed to qchleve umerics to compare the results with the analytical predic-
converged solution for the sixth order structure function. Theg

. . , . tions from the perturbation analysis. However, the results for
time step is set by the fastest time scale in the system, whiCljigterent values ofe can still be compared with some confi-
is the one with the largest shedlr,, . The number of itera-

. ; X dence, since the relative uncertainty between the different
tions (V) needed to achieve convergence is thenddess y
than one:

0.2

N.7v N,
Miterationg = ——% = —I\(M-D)(1-¢2), (6.1
€Ty €

which shows that the number of iterations needed grows like
1/e, making it difficult to get close to the white noise limit
using the same algorithm.

The scaling of the diagonal moments of higher order has
been extracted by means of extended self-similar&§], 1 .
where thepth order structure function is plotted versus the o 1 2 3 4 5 6 7
second order one, which is assumed to be normal. The scal-

ing is found as the average slope of the logarithmic deriva- F|G. 8. Anomalous part of the structure functidagp) — p/3 as

tives in the inertial range. a function ofp for e=0.01 toe=2. The lines correspond térom
We considered a system with 25 shells with wave num+the top: e=0.01, 0.02, 0.10, 0.25, 1.0, and 2.0. The dashed line
bers increasing as powers af=2, with viscosity k=5 corresponds to normal scaling.
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1.68 y T - y y T T is the case for the second moment, normal scaling would

1.66 1.7 v . 1 take place independently of the value .

1.64 x\e_ 1 The behavior of the anomalous exponents in the nonper-
: H(6) i X . i ;

162} B 1 turbative regime was studied numerically. This was found to
' \ ] be a nonlinear monotonic function eh?, decreasing at a
Ler 1.5 ' ' rate much slower than in the perturbative regime. It is thus

H(6) o | 0 02 04 06 ] A > p e regime. _
68 )2 clear that the addition of the time correlation to the advecting

L56 velocity field enhances the anomalous scaling. The anomaly

154 found in the present study is still much smaller than that

1.52 found when the passive scalar is driven by a turbulent veloc-
15t ; ity field driven by Navier-Stokes turbulence or by a shell

1.48 . : . ; . . . model for the velocity field13]. This indicates that the non-
) 1 2 3 4 5 6 7 8 Gaussian nature of the real turbulent velocity field plays a

eX? significant role in the strong anomalous scaling observed for

. ) , real passive scalars.
FIG. 9. Scaling of the sixth order structure function versh3.

The inset shows an enlargement of the perturbative range<1
where the analytical prediction from first order perturbation theory ACKNOWLEDGMENTS
can be compared with the numerical experiments.
The authors wish to thank A. Vulpiani for drawing their

attention to the problem. Discussions with E. Aurell, A.
runs is much smaller than the absolute uncertainty. Thi€elani, P. Dimon, and E. Henry are gratefully acknowl-
means that the slope of, e.g., the sixth order structure fungdged. Particular thanks are due to M. H. Jensen for his
tions versuse will be well resolved, while the absolute val- interest and encouragement during our work, and to M. van
ues can be shifted up and down a few percent. Hecke for many physically insightful comments. P.M.G. was

In Fig. 9 the analytical prediction of the exponents issupported by TMR Grant No. ERB4001GT962476 from the
compared with the result of the numerics. The theoreticaEuropean Commission.
prediction for smalle (see inset of Fig. Pis below the nu-
merical points, which is due to the absolute uncertainty as
explained above. The slope is the same for the analytical APPENDIX A: STOCHASTIC INTEGRATION
calculation and the numerics, giving credibility to the results BY PARTS FORMULA

of the perturbation analysis. It should be noted that the effect A heuristic proof of the stochastic integration by parts
of time correlation on the anomaly is quantitatively quite formula is provided. For a rigorous treatment, $&6,16.
small even in the nonperturbative range wheis equal to | et 7, be a stochastic process whose realizations are defined

one (ex*=4). . . . as the solution of the Ttestochastic differential equation
The global picture provided by the numerical experimentsySpg):

is thatH(2w) is seen to be a nonlinear function efwhich,
after rapid initial decrease in the perturbative range, displays )

a much slower rate of variation. An interesting question is Xe=b(x;,t) + o (X;,0) 7, Xilt=0=Xo, (A1)
whether or not there is a limiting value of the scaling of the
structure function ag>1. However, the quality of the nu-

) ) . where 7, is white noise. Let{; be the stochastic process
merics does not allow us to answer this question.

specified by

VIIl. CONCLUSION Xe=D(x¢,t) + en(xe 1) o (X, , 1) + o (X, t) 7 Xt|t:O:)20- \
A2
We have presented a shell model for the advection of a

passive scalar by a velocity field which is exponentially cor- _
related in time. We developed a systematic procedure to caf-0" €quale the two SDE's coalesce: EGA2) can be derived
culate the exponents of the correlation of the diagonal moffom EQ. (A1) under the variation of the white noisg
ments (the structure functions For the delta-correlated — 7:+h(X¢.t). The integration by parts formula states that
velocity we find good agreement between analytical and nufor any smooth functiond the following identity holds:
merical calculations up to the eighth order. We presented an
analytical perturbative theory to compute the correction to
the scaling exponents due to the exponentially correlated ve- <d—f(§f)>
locity field. €

The occurrence of anomalies in the exponents of the di-
agonal moments of the scalar and their nonuniversality ver- ) )
sus the intensitg\ 2 of the time correlation is related to the Where( ), denotes the expectation values with respect to the
presence of pure short range couplings in the correspondingeasure induced by;. In order to prove it, let us observe
inertial operator, which provide for nontrivial scaling of the that the transition probability density for E¢A2) can be
zero modes. In the absence of such short range couplings, asitten formally as a path integrdlto discretization:

t
=<f(§t) fods h(£s,5)> , (A3)
&

&

€=
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pne(X,t|Xo.0)= JX‘:XDX e—Sg(x,tlxo,O)-%—jB dt’ {[x¢ —b(xp) o (X t')] eh(xpr ,t') = (€212)h3(xq ,t’)},
Xo

_ , (A4)
S.(x.t%0.0) ftdt’ Xpr —b(X¢r)
Xt[x0,00= | —| ———
¢ 0 02 a(x{ ,t")
|
If one introduces the functional forward. Functional differentiation is formally derived from
a Frehet derivative withh(x,,t) = 8(t—s), wheres s a pa-
M(gf):effgdt’{[kt’fb(x{ A a(x) t)]eh(x] ') = (€22)h3(x] t')} rameter specifyir}g _the _time when the white noise. i; per-
t (Aé) turbed. The variation is assumed to be nonanticipating
(causal):
one has by construction
d IimJ ds'6(s—s’)=0. (B1)
MDD =0 (A6) !
Let us consider the system of SDE’s
To each realization of the solutions of EGA2) there is a
corresponding mappingy,— X;=X(t, 7 ,€). Hence the last
equality can be rewritten as the white noise average: =b(x)+ E Tmn(X)Cn(t), (B2)
d
de Mt 7, ) F(X(t, 71, €))) =0, (A7) wherec is the colored noise:
which implies Eq(A3) whene is set to zero. The derivative e~ (t=si(em) ,
p q(A3) f ds'————pn(s") (B3)
‘ f({D)|e=0=D 10, (L) (A8)
de Stlem0 TETLTS Functional differentiation gives
is a Frehet derivative. The dynamics of the stochastic pro- N
cessD/{, is linear once the realizations of {; are known: a(DSXm)z > D] dkbm(X)
yi=Dx;
(A9) g (t=s")(emy)
- +4 ds'———— (s’
Vo= Yed [b(x )+ 0%, 0) ] + (X Do (x,.). 2, o, )
It is worth noting that fob=0, c=h=1, the integration by e (t=9)/(em)
parts formula(A3) reduces to + ———0m(X). (B4)
e\/; '
t(du, F(We)) = (F (W) wy), (A10)

The functional derivative is fully specified when its form is
which is the Gaussian integration by parts form(dae, e.g., known at the times when the variation of the white noise

[1]) applied to the Wiener procesg(0,t). occurs. The latter is determined by the causality requirement
The generalization to a multidimensional complex case
proceeds straightforwardly by introducindZ/ariational pa- d e~ (t=9)/(em) 1
rameters ;e }2, and applying the definitions —(Dfcq(1)=| 4, + 8(t—8)|8n,,
dt i elm
<77m(t)77:(3)>:25mn5(t_5) (A11) (BS)
for the white noise correlations. which implies that the variation of the colored noise is non-

zeroonly immediately after the instantaneous kick

APPENDIX B: STOCHASTIC INTEGRATION BY PARTS e~ (t=9)/(ery)
FOR THE OU PROCESS Dlcy(t)= ———=——6,, Vt=s. (B6)

As in the above appendix, we limit ourselves to the real
case, the generalization to the complex case being straighBy differentiating(B4) one finds



6676 K. H. ANDERSEN AND P. MURATORE-GINANNESCHI PRE 60

42 o (t=9)/(en) ¢ e (t=s)(er) _ g~ (t+8))(ery)
—(D{X) = — =0 (X) 8(t—s) + smooth terms. O(X)cn(t —fds’
dt2( | m) E\/;| m,I( ) ( ) < ( t) n( )> 2¢
(B7)
N N
From the last equation it emerges that fers X2 2 ([0 OX) IR m(t,S") o n(X5)).
=1 m=1 ' '
d 1
— (D) |ies=——=0m (X). (B8) (B12
dt( | m)|t S 6\/T—n m,I( )

This proves the real version of formu(a.1).
Consistency with Eq(B4) then requires that the variation of
the x’s associated with a nonanticipating variation of the

. . . . L e APPENDIX C: THE FOURTH ORDER CORRELATION
white noise at times fulfills the initial condition

TO FIRST ORDER

DXm(S)|¢—s=0. (B9) The inertial operator acting on the fourth momexf) (t)
is in the large time limit
The integration by parts formuléA3) for a smooth func-

tional O(x) is D=1 E:rg)p chc)]
e (t=s "(ery) N , ) f (- S)/(Um)i "
(O(xp)cy(t)y= f ds’ —\/_ IEl (D® Xlﬂxlo(xt)>- —2Kh 10y | dse ds Ref-(m (1,9)
Th =
(B10)

d 4)
S _ _ +k2dm_ 1J dse ("9emm-2) —ReFD | (t,5)
The variation is the solution of the linear problegiB4) of ds

which we defineR to be the fundamental solution. It follows . q
that - k§+ 1dnJ'0ds ei(tis)/(ﬂ") d_S Re}—#r%(tas)
e (s’ —s)l(erp)

t d
€ +kﬁdn,1f ds e*(‘*s)’(”nfl)d—SRe]-'f,"L)lm(t,s).
. ,

t (t=s)/(emp)
(O(xt)cn(t))zf ds fds’
0 € s

N (Cy
. 2 (L% O0X) IRy m(t,8") 7 n(X3)).

"MZ

The bidimensional matrix{y), , is the white noise linear
(B11) inertial operator. The corrections to the white noise theory
are generated by the time derivative at equal times of the

Finally, inverting the order of integration one obtains integrand function R&\):

Fin(t,9) =(Onsm(DOn (DO Ry ms 1+ ml1,5) O 1(9)])
~(Op (DO (DO (DR s 1+ m 1(1:5) O (5)])
H(Op e 1D Ons (DO (D RN (1,5 Oy 1(5)])
~(Onsme 1 (DO (DO(D RN s 1(1,5) O e(9)])
H(Op (DO me (DO n(D Ry N (1,8 Oy 1(5)])
~(OpNem(DOn e (DO n(D Ry e 2(1,5)Oe(5)])
H(Onsm(DOn e 1(DO(D RN ml1,5) O 1(5)])

_<®N+m(t)®N+m+1(t)®n(t)RN+n,N+m+1(tis)®m(S)]>- (CZ)

After a double integration by parts neglecting viscous contributions, one gets into
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c®
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( et 3en? ) ( 3e\? et et ex? )

4
|t 1o+

+ 5n,m72

T-2+m 7T—1+m T-2+m T-1+m

The diagonal scaling exponent is derived up to first order iesorting to linear perturbation theory. If pure second neighbor
interactions are taken into account, the constgiiX) is specified by

1— (14N @4 \~H@)z(0)
2(0)+2(0)*\ 3@

(C4

a(0)=

The result is approximately equal to one for é&llanging betweef0,2]. The first order correctiorn’ (0) is extracted from the
solution of the linear system:

(4NZTHG) 1 AN27(0))x’ (0)+4N2X(0)Z' (0)
= —4NT2H)x(0) + 4N 1% (0)2(0) + 42217 HR)x(0)2(0)?
+20*(9—4x(0) +[4—22¢(0)]z(0))+2\*THR)(4+[9—24x(0)]—4x(0)z(0)),
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[N2(=3—=N"H@-\HE)HZ(0)+N272HP)2(0)?]x" (0) +[ A2+ (—3— N~ HE - \H@))x(0)N2+ 2127 2H(2)x(0)2(0)]2' (0)
=—13\*=3\*TH@ 4 3\ 4T HP) (24 \ “H@))x(0) — 13\ *2(0) — 3N*~HP)z(0)
F A4 (42— 2\ 2@ L 7\ H@) 1 9\ H@) 4 g(0))x(0)Z(0)
+1*x(0)2(0)[1— 10\~ 2H@)+ (= 14 2q(0))\ M@+ (3+2q(0))\ @]
+\474H3)g(0)x(0)2(0)°,

A27H@x(0)[1-22(0)(1—-q(0)+ 3N~ 2H@)g(0)z(0) + A~ 21+ \~HZ)]z/ (0)
+A27H@Z(0)[1—2(0)(1+\2H@ 4 \~H@)—q(0)
+\ 21 q(0)2(0))]x' (0) + 1>~ HPz(0)?[x(0) + 1 " *)x(0)2(0) ]9’ (0)
=2\4THE)(— 14+ )\ 3H@) 4\ ~2H@) 2\ ~HR))x(0)z(0) + N+ H(@)z(0)2+ 6122 H)x(0)2(0)?
=2\ ®)q(0)x(0)2(0)> = N*(1+0(0))x(0)2(0)>~\*"3H3)(=7+2q(0))x(0)2(0)*
+A4H@(2-70(0)+q(0)%)x(0)2(0)2+ 214 H@) (1 + X ~2H(2)x(0)2(0)3
AR AT L 7AHR L\ A+ 2041+ N H @) z(0) + 20 H2)q(0)x(0)2(0)®
+ 2047 2H@)(1+ X 73H2))q(0)3x(0)2(0)3+ \*~8H(2)q(0)3x(0)2(0)*. (C5)
APPENDIX D: THE INERTIAL OPERATOR FOR THE SIXTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

Under the hypothesis that pure second neighbor interactions do not require new equations to specify the diagonal scaling for
small values ofe, there are only four equations describing how global coupling is renormalized by relevant pure short range
interactions. Given thenth shell, one has
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APPENDIX E: THE INERTIAL OPERATOR FOR THE EIGHTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

The set of independent equations is finally given as

>

p.q.r,s

(8;0)
m,m,m,m;p,q,r,s

+e|n?n%)

mmpqrs]Cpqrs 0,

8;1 8 _
2 [I m, m m,m—1;p,q,r, st el Sn,m,)m,mf1;p,q,r,s]C§J,()1,r,s_ 0,

p.q,r,s

>

p.q.r,s

>

p.q,r,s

>

p.q.r.,s

(8,0)
m,m,m—1m-1;p,q,r,s

(8,0)

(8,0)

[(8:1)

m,m—1m— 1pqrs]Cpqrs_o'

(8;1 —
m,m,m+1m-— 1pqrs+'EI m+1m lpqrs]cpqrs 0,

(ED)

(8 1) -
m,m—1m-1m-1;p,q.,r, s+ EI —1m—1m— 1pqrs]Cpqrs Ov

(8;1)
2 [lmm+1m 1m— 1pqrs+€|mm+1m 1m— lpqrs]cpqrs 0,

p.q.r,s

(8:1)
2 [lmm+lm+lm 1pqrs+€|mm+lm+lm 1pqrs]Cpqrs 0'

p.q.r,s

(8;1)
2 [lmm+1m 1m— 2pqrs+€|mm+1m 1m— 2pqrs]cpqrs 0.

p.q.r,s

The closure is provided again assuming scaling for all the possible conditioned expectation values with respect to a given shell.

It follows that
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