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Shell model for time-correlated random advection of passive scalars
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We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity
field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time
correlations are investigated using perturbation theory around the white noise limit and nonperturbatively by
numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the
passive scalar.@S1063-651X~99!07711-9#
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I. INTRODUCTION

The advection of a scalar observableu(x,t) by a velocity
field v is described in classical hydrodynamics by the line
partial differential equation~PDE!

] tu1v•“u5k“2u1f. ~1.1!

If v is assumed to be the solution of the Navier-Stokes eq
tions in a turbulent regime and the Pe´clet number Pe, which
measures the ratio between the strength of the advectiv
fects and the molecular diffusionk in ~1.1!, is large,

Pe[
Lv
k

@1

(L andv are the characteristic length and advection veloc
in the problem!, and if a steady state is reached, an iner
range sets in where both the effects of the forcingf limited to
the large scales and those of the molecular diffusion ac
mainly on the small scales can be neglected. In the ine
range no typical scale is supposed to characterize the fl
As a consequence, the structure functions of the scalar

Sp~r !5^@u~x1r !2u~x!#p& ~1.2!

display a power law behavior in the inertial range w
anomalous scaling exponentsH(p) @1#. The word anomalous
means that the exponentsH(p) deviate from the linear be
havior predicted by a direct scaling analysis of Eq.~1.1!.

It was first realized by Kraichnan@2# that anomalous scal
ing can be observed in the mathematically more tracta
case of the advection by a random homogeneous and is
pic Gaussian velocity field, which is delta correlated~white
noise! in time and has zero average and covariance id
dimensions given by

*Electronic address: ken@isva.dtu.dk
†Electronic address: pmg@nbi.dk
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^vi~x,t !vj~y,s!&

5d~ t2s!FDi , j~0!2D0ux2yujwn~d211jwn!d i , j

1jwn

~x2y! i~x2y! j

ux2yu2
G .

The power law behavior of the covariance mimics an infin
inertial range for the velocity field. The scaling exponentjwn
is a free parameter characterizing the degree of turbulenc
the advecting field. The physically meaningful values ran
from 0 to 2. In the first limit the effect of the random adve
tion is just to define an effective diffusion constant@3#. In the
latter case the velocity increments are smooth, as expe
for a laminar flow. The choicejwn equal to4

3 represents the
scaling of the velocity field conjectured by Kolmogorov fo
the solution of the Navier-Stokes equation in the turbul
regime.

The hypothesis of delta correlation in time is of gre
mathematical advantage, for it allows one to write the eq
tions of motion of the scalar correlations in a linear clos
form. The evolution of each correlation in the inertial ran
is specified by a linear differential operator, the inertial o
erator, plus matching conditions at the boundary of the in
tial range. The occurrence of anomalous scaling has b
related to the existence of zero modes of the inertial ope
tors dominating the scaling properties of higher order cor
lations ~@3–6# and, for a recent review and more comple
bibliography, @7#!. The behavior of the anomaly has als
been numerically measured for the fourth order struct
function versus the turbulence parameterjwn @8#. However,
implementing accurate numerical experiments still remain
difficult task. Therefore, it turns out to be useful to use t
shell model as a laboratory in which to test ideas and res
related to the full PDE model~see@9# for a general introduc-
tion to the shell model concept!. In @10,11# two different
shell models advected by a delta-correlated velocity fi
mimicking the Kraichnan model were constructed. Anom
6663 © 1999 The American Physical Society
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6664 PRE 60K. H. ANDERSEN AND P. MURATORE-GINANNESCHI
lous scaling was observed numerically and in the simp
case@11# it was proven analytically that the anomaly of th
fourth order structure function is related to the anomalo
scaling of the dominant zero mode of the inertial operato

The passive scalar advection by a white noise velo
field is a useful mathematical model, but is still very far fro
being a physical realistic velocity field possessing both ti
correlations and deviations from Gausianity. A first sm
step in this direction is made by investigating how the int
duction of a time correlation in a Gaussian velocity fie
affects the statistical properties of the scalar field.

In the present paper we introduce a time-correlated ve
ity field in a shell model. This is done by replacing the wh
noise with the Ornstein-Uhlenbeck process, which provi
exponentially decaying time correlations~Sec. II!. We inves-
tigate the model both analytically and numerically. By mea
of stochastic variational calculus, which we review in A
pendixes A and B, we show how to rewrite the equations
motion for the scalar correlations in integral nonclosed for
Such an operation allows evaluation of the correction to
white noise inertial operator stemming from the tim
correlated velocity field. This procedure has the further
vantage that it creates a nonambiguous relationship betw
the coupling terms for the scaling exponentjwn of white
noise advection to the scaling exponentj of the time-
correlated velocity field~Sec. III!.

The inertial operators can be expanded around the w
noise limit in powers of an adimensional parameter which
interpreted as proportional to the ratioe between the time
correlation and the turnover time of the advecting field. W
focus on the features of the steady state. There we ass
that the averages over the Ornstein-Uhlenbeck process o
the observables are time-translational invariant. As a con
quence, the inertial operators become linear up to any fi
order ine.

In the white noise case, whene is equal to zero, we gen
eralize the procedure first introduced in@11# and we show
that the scaling of the zero modes of the inertial operato
any order is captured by focusing on nearest-shell inte
tions. The equations are closed with a scaling Ansatz~Sec.
IV ! by postulating that the scalar field is ‘‘close’’ to a mu
tiplicative process. Furthermore, we perturb the clos
scheme in order to extract the first order corrections ine to
the anomalous exponents for different values ofj ranging
from zero to two. The prediction of perturbation theory is
e dependence~nonuniversality! of the exponents except fo
the second orderH(2) ~Sec. V!. The overall result is analo
gous to the one obtained in@12#, where a Gaussian time
correlated velocity field is considered for the advection of
scalar field in Eq.~1.1!: the introduction of time correlation
is seen to enhance intermittency. The anomalies va
smoothly in the laminar limitj52.

To examine the validity of the results from the analytic
calculations and explore the regime with long time corre
tions (e@0), we turned to numerical experiments. The o
currence of corrections to the anomalies predicted by
perturbation theory for small values ofe is confirmed. How-
ever, strong nonperturbative effects set in and domin
when the expansion parameter becomes of the order of u
r
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II. MODEL

The model is defined by the equations (m51,2, . . . ,N)

F d

dt
1kkm

2 Gum~ t !2d1mf ~ t !5 i @km11um11* ~ t !um* ~ t !

2kmum21* ~ t !um21* ~ t !#,

~2.1!

um~ t !5
vm

eAtm
E

0

t

ds e2(t2s)/(etm)hm~s!, ~2.2!

f ~ t !5
f̃

eAt
E

0

t

ds e2(t2s)/(et)h~s!, ~2.3!

where the asterisk denotes complex conjugation and
hm(t)’s and h(t) are independent white noises with ze
mean value and correlation:

^hm~ t !hn* ~s!&52dmnd~ t2s! and

^h~ t !h* ~s!&52d~ t2s!. ~2.4!

The boundary conditions areu05uN1150. The model can
be regarded as a severe truncation of the equation of
passive scalar~1.1! in Fourier space. The field componentum
is the representative of all the Fourier modes in the shell w
a wave number ranging betweenkm5k0lm and km11
5k0lm11. The parameterl is the ratio between two adja
cent scales and it is usually taken equal to two in order
identify each shell with an octave of wave numbers. T
energy transfer in a turbulent flow is conjectured to occ
mainly through the interactions of eddies of the same s
As a consequence the interactions in Fourier space are
sumed to be local. The ‘‘localness’’ conjecture@1# is the
motivation for the restriction to nearest neighbors of the c
plings among the shells.

In the absence of external forcing and dissipation,
total ‘‘energy’’ of the passive field is conserved:

d

dt
E5

d

dt (
m51

N

uumu250 for f ~ t !5k50. ~2.5!

Far from the infrared and the ultraviolet boundaries~i.e., for
1!m!N) the conservation of energy is expected to ho
approximately, giving rise to an inertial range. Equatio
~2.2! and ~2.3! describe the random evolution according
Ornstein-Uhlenbeck~OU! processes of, respectively, the a
vecting and external force fields. The OU process has dif
entiable realizations, thus resulting in the random differen
equations with multiplicative noise that specify the dynam
of the scalaru independent of the discretization prescriptio

The velocity correlations are fort>s

^um~ t !um* ~s!&5
uvmu2

e
~e2(t2s)/(etm)2e2(t1s)/(etm)!.

~2.6!

In the limit of larget only the stationary part survives. Th
adimensional parametere appearing in the definition of the
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OU processes~2.2! and~2.3! defines the strength of the tim
correlation in units of the typical timestm . In the white
noise limit one has

lim
e↓0

^um~ t !um* ~s!&52uvmu2dS t2s

tm
D . ~2.7!

For any finitee ordinary differential calculus holds true: th
consistency conditions yield a Stratonovich discretizat
prescription whene is set to zero and the recovery of th
white noise advection model of@11#. Hence the factor 2 in
~2.7! always cancels in computations for thed distribution is
evaluated at one of the boundaries of the domain of inte
tion.

Information about the scaling of the correlations of t
velocity field at equal times is stored in the constantsvm .
We assume the power law behavior

uvmu}km
2j/2 . ~2.8!

Kolmogorov scaling is specified byj52/3 while j52 cor-
responds to a laminar regime. Thetm’s in Eq. ~2.2! describe
the typical correlation times for the random velocity field.
simple physical interpretation is to identify them with th
turnover times, i.e., with the typical time rates of variati
through nonlinearity of the advection field on each shell@13#:

tm;
1

kmuvmu
}km

211(j/2) . ~2.9!

The scaling of the correlation times is then fully specified
terms of the parameterj. It is worth noting that for anyj
less than 2 thetm’s are always decreasing functions of th
wave number.

The evolution of the scalaru is determined in the inertia
range by its complex conjugate. It is useful to introduce
unified notation for the 2N degrees of freedom. WithQ5u
% u* andU5u% u* one has for theN shells

d

dt
Qa5 (

b51

2N FAa,b1 (
g51

2N

Ba,b
g UgGQb1 f da,11 f * da,N11 ,

~2.10!

with

Am,b52kkm
2 dm,b ,

AN1m,b52kkm
2 dm,n ,

Ba,b
m 52 ikm11@db,m11da,N1m2db,mda,N1m11#,

Ba,b
N1m5 ikm11@db,N1m11da,m2db,N1mda,m#, ~2.11!

where Latin and Greek indices range respectively from 1
N and from 1 to 2N. The set of matrices with constant e
tries Bg do not commute within each other and with theA
matrix. The known sufficient condition~see, for example
@14#! to have a solution of Eq.~2.10! in an analytic exponen
tial form is therefore not satisfied. From the geometri
point of view, noncommutativity means that the dynamics
confined to a manifold that turns into a hypersphere inC N in
the inertial limit ~2.5!.
n

a-

a

o

l
s

The complex equations~2.10! are invariant under phas
transformations. Given two diagonal Hermitian 2N32N ma-
trices with time independent random entries

T[diag~eif1, . . . ,eifN,e2 if1, . . . ,e2 ifN!, ~2.12!

S[diag~e2 i (f11f2), . . . ,e2 i (fN211fN),0,ei (f11f2), . . . ,

ei (fN211fN),0!, ~2.13!

if Q is a realization of the solution of the equations of m
tion, then

TQ~U !5Q~SU! ~2.14!

is still a solution. The phase symmetry is the remnant of
translational invariance of the original hydrodynamical equ
tions in real space@9#. From the phase symmetry~2.14! it
follows that at stationarity the only analytic nonzero m
ments of the correlation are of the form

Cm1 , . . . ,mv

(2v) 5^P i 51
v Qmi

QN1mi
&[^P i 51

v uumi
u2&.

~2.15!

In the inertial range such quantities display a power law
havior. The diagonal sector of the moments whose sca
properties are specified by the exponentsH(2v)

Cm, . . . ,m
(2v) }km

2H(2v) ~2.16!

is in the shell model context, the analog of the structu
functions~1.2! of the original PDE model~1.1!. The expo-
nentsH(2v)’s are said to be normal if they can be derive
from dimensional analysis. Under the assumption tha
steady state is reached, one matches the scaling of the in
terms in Eq.~2.1! with a power law decay of the solution

km11km
2(j/2)um112kmkm21

2(j/2)um21;0. ~2.17!

The resulting prediction is a linear behavior of the expone
versus the orderv of the diagonal correlation:

H~2v!5vS 12
j

2D . ~2.18!

The scaling argument~2.17! neglects completely the random
fluctuations of the passive scalar field. Normal scaling ho
if the statistics of theu field are Gaussian. Deviations from
normal scaling are then correlated with the occurrence
intermittency corrections to the Gaussian statistics. A s
tematic account of the fluctuations is provided by the stu
of the equations of motion satisfied by the moments of
scalar field.

III. EQUATIONS OF MOTION OF THE FIELD MOMENTS

In the white noise limit,e equals zero; the Furutsu
Donsker-Novikov formula@1# and the delta correlation in
time of the velocity ensure that the momentsC(2v) are speci-
fied by the solutions of closed linear systems@10,11#. In the
presence of finite time correlations, stochastic calculus
variations@15,16# allows one to write nonclosed integrodi
ferential equations for the correlations. A typical function
integration by parts relation is
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^F„Q~ t !…UN1m~ t !&5E
0

t

dŝ UN1m~ t !Um~s!&

3K dF„Q~ t !…

dQa~ t !
Ra,b~ t,s!Bb,g

m Qg~s!L ,

~3.1!

where Einstein convention holds for repeatedGreekindices.
The matrix R is the fundamental solution of the homog
neous system associated with Eq.~2.10!. A heuristic proof of
the stochastic integration by parts formula and of Eq.~3.1! is
provided in Appendixes A and B.

Let us start with the second moment of the scalar field

Cm
(2)~ t !5̇^Qm~ t !QN1m~ t !&[^um~ t !um* ~ t !&. ~3.2!

From the equations of motion~2.10! one has

F d

dt
12kkm

2 GCm
(2)~ t !22 Re$^QN1m~ t ! f ~ t !&%dm,1

52 Re$ ikm11^UN1m~ t !QN1m11~ t !QN1m~ t !&%

22km Re$ i ^UN1m21~ t !QN1m21~ t !QN1m21~ t !&%.

~3.3!

The integration by parts formula~3.1! gives

F d

dt
12kkm

2 GCm
(2)~ t !22dm,1ReE

0

t

dŝ f ~ t ! f ~s!* &

3^RN1m,N11~ t,s!&

52km11
2 tmE

0

t

ds
^Um~ t !UN1m~s!&

tm
ReF m

(2)~ t,s!

22km
2 tm21E

0

t

ds
^Um21~ t !UN1m21~s!&

tm21

3ReFm21
(2) ~ t,s!, ~3.4!

wherem51, . . . ,N, Re is the real part, and

F m
(2)~ t,s!5̇GN1m11,N1m;N1m,m11

(2) ~ t,s!

2GN1m11,N1m11;N1m,m
(2) ~ t,s!

1GN1m,N1m;N1m11,m11
(2) ~ t,s!

2GN1m,N1m11;N1m11,m
(2) ~ t,s!, ~3.5!

GN1m,N1n;N1p,q
(2) ~ t,s!

5̇ (
a51

2N

^QN1p~ t !RN1m11,a~ t,0!Ra,N1n
21 ~s,0!Qq~s!&,

~3.6!
dm5̇uvmu2tm}km
2(11j/2) . ~3.7!

When a steady state is reached, the left-hand side~lhs! of Eq.
~3.4! can be neglected through the whole inertial range. T
rhs specifies the inertial operator of the theory. A furth
simplification is attained in the limit of very large shell num
ber. For anyj less than 2, one has

lim
m↑`

^Um~ t !UN1m~s!&
tm

[ lim
m↑`

^um~ t !um* ~s!&
tm

5uvmu2d~ t2s!

~3.8!

independently ofe. At equal times the resolvent matrixR
reduces to the identity. From Eqs.~2.8! and ~2.9! it follows
that

km11
2 dmtm5l2. ~3.9!

Hence form going to infinity the inertial operator is linear
ized in the form

I ~Cm
~2!!52

l2

tm
~Cm11

(2) 2Cm
(2)!22

l2

tm21
~Cm

(2)2Cm21
(2) !.

~3.10!

The slowest decay scaling solution compatible with a z
lhs is

Cm
(2)}tm5km

2H(2) . ~3.11!

In other words, we have proven that the scaling of the sec
moment is normal since it coincides with the dimension
prediction~2.18!. Moreover since the result does not depe
on e, it is universal versus the time correlation. It is wor
stressing that the derivation of Eq.~3.11! requires that each
of the terms appearing in Eq.~3.10! has separately a finite
nonzero limit form going to infinity. The condition turns ou
not to be self-consistent when the same reasoning is app
to moments higher than the second.

An important consequence of normal scaling of theCm
(2)’s

is the Obukhov-Corrsin@17,18# law for the decay of the
power spectrumG(k) of the passive scalar if the Kolmog
orov scaling is assumed for the advecting field:

G~k!5
d

dk (
kn<k

^~unun* !2&}k2„H(2)11…uj52/35k25/3.

~3.12!

A second interesting limit is whene tends to zero. Ne-
glecting all nonstationary contributions to the velocity corr
lations the rhs of Eq.~3.4! becomes

I ~Cm
~2!!52km11

2 dm~Cm11
(2) 2Cm

(2)!22km
2 dm21~Cm

(2)2Cm21
(2) !

22km11
2 dmE

0

t

ds e2(t2s)/(etm)
d

ds
ReF m

(2)~ t,s!

1km
2 dm21E

0

t

ds e2(t2s)/(etm21)
d

ds
ReFm21

(2) ~ t,s!.

~3.13!
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If e is set exactly to zero the integral terms disappear and
white noise equations of@11# are recovered. The informatio
about the scaling of the velocity field is absorbed in thedm’s.
In a pure white noise theory it is convenient to redefine
turbulence parameter as

jwn511
j

2
. ~3.14!

A Kolmogorov scaling of the velocity field corresponds
jwn equal to4

3 , which is also the value giving the Obukhov
Corrsin scaling in Eq.~3.12!. The two definitions of the de
gree of turbulence coincide forj equal to two~Batchelor
limit !. It is natural to identifyjwn with the turbulence param
eter of the Kraichnan model. The correspondence fixes
physical range ofj between@22,2#.

In the general case of the 2vth even moment of the scala
C(2v) one has

I S Cm1 , . . . ,mv

~2v! 5 (
q1 , . . . ,qv

I m1 , . . . ,mv ,q1 , . . . ,qv

(2v;0) Cq1 , . . . ,qv

(2v)

2(
i 51

v

2kmi11
2 dmi

E
0

t

e2(t2s)/(etmi
)

d

ds

3ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!

1(
i 51

v

2kmi

2 dmi21E
0

t

ds e2(t2s)/(etmi21)
d

ds

3ReFm1 , . . . ,mi21, . . . ,mv

(2v) ~ t,s!. ~3.15!

The multidimensional matrixI (2v;0) is the linear inertial op-
erator of the white noise theory. The integrand functio
Fm1 , . . . ,mi21, . . . ,mv

(2v) (t,s) are given by the straightforwar

generalization of Eq.~3.5!. The lhs, as above, is set to zero
far as the steady state features of the inertial range are
cerned. Repeated integrations by parts in the larget limit
generate a Laplace asymptotic expansion@19# of integral
terms in the rhs, the coefficients of which are the derivati
with respect tos of the functionsF (2v) evaluated at equa
times. When the steady state sets in we assume the l
quantities to be invariant under time translations for largt.
Under such an assumption it will be proven in Sec. V that
equal time derivatives are specified at equilibrium by line
combinations of theC(2v)’s. The effect of a small time cor
relation is therefore to generate new couplings of ordere in
the inertial operators. The observables we focus on are
scaling exponents. As discussed in the introduction, ano
lies occur in the presence of nontrivial scaling zero mode
the white noise inertial operators. It makes sense to relate
e dependence of the anomalous exponents to a perturb
of the scaling zero modes derived fore50. A straightfor-
ward approach to the problem calls for the solution ofNv

linear equations. A further source of difficulty is that exa
determination of the zero eigenvectors of the inertial ope
tors of any given order requires the matching of infrared a
ultraviolet boundary conditions. In the absence of an ex
e
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diagonalization, any analytical approach must rely on clos
Ansätze first to solve the white noise problem and then
yield the corrections to the zero modes by linear perturba
theory.

IV. WHITE NOISE CLOSURE

In this section we present a closure strategy to comp
theH(2v)’s in the case of white noise advection. As show
in the preceding section, the second diagonal moment is
mal and universal versus the time correlation. The first n
trivial zero mode problem is provided by the fourth ord
inertial operatorI (4;0). In @11# it was shown that the anoma
lous exponentr4,

H~4!52H~2!2r4 , ~4.1!

can be extracted up to a very good accuracy from the s
tion of only two nonlinear algebraic equations. The statio
ary equations forC(4) in the inertial range far from the in
frared and ultraviolet boundaries are given by

05
I m,n;p,q

(4;0) Cp,q
(4)

2l2

[2S 1

tm
1

1

tm21
1

1

tn
1

1

tn21
DCm,n

(4) 1
1

tm
Cm11,n

(4)

1
1

tn
Cm,n11

(4) 1
1

tm21
Cm21,n

(4) 1
1

tn21
Cm,n21

(4)

12dm,nS Cm,m11
(4)

tm
1

Cm,m21
(4)

tm21
D 22dm11,n

Cm,m11
(4)

tm

22dn,m21

Cm,m21
(4)

tm21
. ~4.2!

One recognizes two kinds of couplings inI m,n;p,q
(4;0) .

~1! ‘‘Global,’’ or ‘‘unconstrained,’’ interactions. The in-
dices p and q range respectively fromm21 to m11 and
from n21 to n11. The couplings are independent of th
relative values ofm andn. In this sense they are referred a
global.

~2! ‘‘Purely local’’ interactions. These occur only forum
2nu<1 and correspond to the terms proportional to t
Kroeneckerd in Eq. ~4.2!.

Anomalous scaling in the inertial range is strictly relat
to the presence of such purely local interactions. Were th
latter neglected, the fourth order moment would have a n
mal scaling solution

Cm,n
(4) }

tn

tm
tm

2 . ~4.3!

The idea is to capture the anomalous scaling by looking
the ‘‘renormalization’’ of global couplings by pure sho
range ones. Disregarding the boundaries, the system is
variant under a simultaneous shift of the indices. Hence,
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suming a perfect index-shift invariance there are, for themth
shell, only two independent equations whered-like terms
occur:

05(
p,q

I m,m;p,q
(4;0) Cp,q

(4) ,

05(
p,q

I m,m21;p,q
(4;0) Cp,q

(4) . ~4.4!

The third equation involving a purely local interaction of th
mth shell with its nearest neighbors,

05(
p,q

I m11,m;p,q
(4;0) Cp,q

(4) ,

is generated from the second of Eqs.~4.4! by a simple index
shift. Therefore, it is not regarded as independent. The
~4.4! contain all the relevant information needed to extr
the scaling of the fourth moment. It forms a closed system
equations independently on the shell numberm as one im-
poses scaling relations to hold within the set of ‘‘indepe
dent’’ moments of fourth order:

Cm1n,m1n
(4) 5z2nCm,m

(4) , ~4.5!

Cm1n,m
(4) 5xkn21

2H(2)Cm,m
(4) , ~4.6!

where the integern is taken larger than zero. As in the anal
sis of the interactions, the concept of independence st
from the assumption of index shift invariance: the mome
of the formCm2n,m

(4) are immediately reconstructed once Eq
~4.5! and ~4.6! are given:

Cm2n,m
(4) 5xkn21

2H(2)znCm,m
(4) .

Let us analyze the closure Ansatz in more detail. The fi
equation~4.5! is a global scaling assumption of the ‘‘diago
nal’’ sector of the fourth moment. Its justification lies in th
very definition of an inertial range. The second scaling
sumption relates the diagonal sector to the nondiagonal
via a marginal scaling. It is analogous in the present con
of an operator product expansion~OPE! in statistical field
theory @20#. There, renormalization group~RG! techniques
are able to describe the scaling behavior of correlations
fields sampled at large real space distances one from
other. If an observable requires the evaluation of a corr
tion including the products of one field in two points at sh
distances, i.e.,̂f(x2dx)f(x1dx)•••&, the RG procedure
cannot be directly applied. The problem is overcome by
ir
t
f

-

s
s
.

t

-
ne
xt

of
he
a-
t

n

OPE or short distance expansion. The prescription is to
write the product via a Taylor expansion in terms of loc
composite operators sampled just at one point. Such a p
is now well separated from all the others appearing in
correlation function. The original correlation is replaced by
set of correlations such that RG applies provided an e
renormalization, renormalization of composite operat
~RCO!, is introduced. The latter is understood by observ
that in our example the first term in the Taylor expansi
gives

f~x1dx!f~x2dx!;f~x!2.

The mathematical meaning of a field is one of an opera
valued distribution. The product of two distributions at equ
points, i.e.,f(x)2, requires a regularization before the cuto
is removed in order for it to make sense as a distributi
This is the content of the RCO. Finally, at leading order t
relationship between the renormalized quantities reads,
the above example,

^@f~x1dx!f~x2dx!#R•••&;c~dx!^@f~x!2#R•••&.
~4.7!

Roughly speaking, the small real space separations are a
ciated with the UV behavior of the Fourier conjugated va
able. In the shell model context theum are representative o
the scalar field variation over one octave. The mome
Cm,m1n

(4) correspond to the average of the product of squa
increments of the scalar field at different wave numbers

Cm,m1n
~4! ;^f~km1n!2f~kn!2&,

f~km!; K E dDxeik•x@u~x!2u~0!#RL
km!uku<lkm.

Equation~4.6! states then that scaling is restored for lar
shell separations~n going to infinity, i.e., spatial scales muc
smaller thankm

21) independently on the smaller wave num
ber km. The analogy with the OPE is then summarized b

lim
n↑`

E dDy eikn•yc~y!;xkn21
2H(2) , ~4.88!

wherex is a renormalized constant. The insertion of the sc
ing Ansatz in Eq.~4.4! leaves a nonlinear system in the u
known variablesz andx. By applying the definitionkn5ln

one gets

212l2H(2)12x~11zl2H(2)!50,

~11z!l2H(2)1xz~2123l2H(2)l22H(2)1zl23H(2)!50,
~4.9!

which, after straightforward manipulation, providesz as the
physical root of a second order polynomial
z5
112l2H(2)12l22H(2)1l23H(2)1A114l2H(2)18l22H(2)26l23H(2)24l25H(2)1l26H(2)

2~2l22H(2)1l23H(2)1l24H(2)!
. ~4.10!
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In terms ofz, the anomaly is

r452H~2!2
ln z

ln l
~4.11!

and it proves to be in fair agreement with the values obtai
from the numerical solution of the exact equations~4.2! @11#
and from the numerical integration of Eq.~2.1! for all the
values of the turbulent exponentj in the physical range~see
also Figs. 1 and 2!. The sign ofr4 is always positive: the
effect of the anomaly is to decrease the diagonal sca
exponent.

The procedure presented in detail for the computation
the fourth order exponent is straightforwardly extended
any higher order moment when one recognizes that, in g
eral, two crucial observations hold.

~1! In the absence of pure short range couplings, the n
mal scaling prediction holds true far from the boundaries
the zero modes of the inertial operators of any order 2v.

~2! For any fixed shellm, there is a one-to-one correspo
dence between the number of independent equations and
ments of order 2v.

In the case ofC(2v) there are 2v21 equations: for any
fixed reference shellm1, the interaction with the second in
dexm2 is affected by a pure short range coupling if the lat
is equal to or one unit different fromm1, i.e., there are only
two possible choices, and so on until thevth index is
reached. On the other hand, 2v21 is the number of exponent
that characterize the scaling of the 2vth moment. The An-
satz is that the marginal scaling of the nondiagonal secto
fully specified in terms of the diagonal scaling exponents
order less than 2v. By means of the OPE’s, one is able
close the zero mode equations in terms of 2v21 unknown
renormalization constants andH(2v). Analogy with a field
theoretical OPE shows that the need for an infinite se

FIG. 1. Analytical prediction for the anomalous part of the sc
ing exponent compared with the results of the numerical exp
ments for different values of the turbulence degree parametej.
Kolmogorov scaling of the advection field corresponds toj52/3.
The dash-dotted line represents the~dimensional! normal scaling
prediction. The continuous line interpolates the exponents as
tained from numerical experiment~squares!. The circles are the
analytical prediction from the closure Ansatz.
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constants does not necessarily imply the nonrenormaliza
ity of the real space theory mimicked by the shell mod
@21#.

More concretely, the diagonal scaling exponent of t
sixth moment (v53) of the scalar field

Cm,n,p
(6) 5^QN1mQmQN1nQnQN1pQp&[^uumu2uunu2uupu2&

~4.12!

according to the above criterion requires four independ
equations~see Appendix D!

(
p,q,r

I m,m,m;p,q,r
(6;0) Cp,q,r

(6) 50,

(
p,q,r

I m,m,m21;p,q,r
(6;0) Cp,q,r

(6) 50,

~4.13!

(
p,q,r

I m,m21,m21;p,q,r
(6;0) Cp,q,r

(6) 50,

(
p,q,r

I m,m11,m21;p,q,r
(6;0) Cp,q,r

(6) 50.

The OPE-inspired closure yields

Cm1n,m1n,m1n
(6) 5z2 lCm,m,m

(6) ,

Cm1n,m1n,m
(6) 5x1kn21

2H(4)Cm,m,m
(6) ,

~4.14!
Cm1n1p,m1n,m

(6) 5x2kp21
2H(2)kn21

2H(4)Cm,m,m
(6) ,

Cm1n,m,m
(6) 5x3kn21

2H(2)Cm,m,m
(6) .

Inserting the OPE in Eq.~4.13!, one gets into the algebrai
system for the unknown renormalization consta
(x1 ,x2 ,x3) and the diagonal scaling factorz.

211la~2113zx1!13x350,

2l2azx11l4a1r4z2x122z~x122x2!

1la@11z~27x114x3!#50,
~4.15!

la~114x126x3!1l2a~4zx222x3!2x350,

l3a1r4zx11laz~x123x2!2zx21l5a1r4z2x2

2l3az~x22x3!1l2a~24zx21x3!50.

After some algebra, Eq.~4.15! reduces to a single third orde
polynomial specifying the physical root ofz. It is worth re-
marking that from the functional dependence of the coe
cient of Eq. ~4.15! the exponentH(6) depends upon the
anomaly ofH(4). Once again, the anomaly evaluated fro

r653H~2!2
ln z

ln l
~4.16!

is in fair agreement with numerics~see Figs. 1 and 2! for
different values ofj.

In Appendix E, the same steps are performed in the c
of the eighth momentCm,n,p,q

(8) . The analytical predictions for

-
i-

b-
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the anomalous exponents are summarized in Fig. 2. In
cases the anomalies are decreasing functions of the tu
lence parameterj vanishing smoothly when the laminar lim
(j equal two! is approached. The anomaly of the fourth ord
moment can be compared with the results of numerical
periments for the fourth order structure function of the K
ichnan model@8#. There, the adopted turbulence paramete
jwn . For values ofjwn of order one, i.e., from the Kolmog
orov scaling up to the Batchelor limit, one indeed obser
the same monotonically decreasing behavior with values
the anomaly of the same order as those found in the s
model. For lower values ofjwn the anomaly in the Kraichnan
model displays a maximum before decreasing to zero forjwn

equal to zero, i.e., whenj tends to22. No sign of such
behavior is observed in the shell model. The discrepa
might be an artifact of the shell model, which was origina
designed to mimic the supposed local-in-scale characte
the nonlinear interactions in a turbulent flow@9# and fails to
describe a regime where strong nonlocal effects become
portant.

On a phenomenological level, the energy transfer in
inertial range of the turbulent field is related to the occ
rence of a cascade mechanism, as conjectured by Richar
@22#. The conservation of energy in the inertial range i
poses that the force occurring on large real space scal
transferred to small scales~i.e., large wave numbers! before
dissipating. A mathematical description of the cascade
provided by multiplicative stochastic processes@23#. Multi-
plicative modeling has been shown to account for most
the features observed in real and synthetic turbulence@24,9#.
In the present case, the idea of a multiplicative structur
incorporated into the hypothesis that the scaling of the n
diagonal sector of a given moment of order 2v is recon-
structed once the scaling of the lower moments is kno
Such an assumption, together with the analysis of the c
plings in the inertial operator of order 2v, yields with fair
accuracy the scaling exponents of the model without hav
to resort to an exact diagonalization of the inertial opera

FIG. 2. Prediction of the closure Ansatz for the anomalies in
scaling exponents of the fourth,r4, the sixth,r6, and the eighth,
r8, moments of the scalar field versus the turbulence parametej.
In all cases, the anomalies are a decreasing function ofj going
smoothly to zero as the Batchelor limitj equal to 2 is approached
The anomaly of the eighth moment is obtained as the nume
solution of a sixth order polynomial.
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V. PERTURBATIVE ANALYSIS

Let us now turn to the time-correlated case. The idea is
evaluate the scaling behavior of the dominant zero mode
the inertial operators~3.15! linearized up to first order ine
by perturbing the white noise closure Ansatz.

The first order corrections ine to the inertial operators are
obtained by truncating the integration in parts to the ter
linear in e:

2kmi11
2 dmi

E
0

t

e2(t2s)/(etmi
)

d

ds
ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!

52el2
d

ds
ReFm1 , . . . ,mi , . . . ,mv

(2v) ~ t,s!us5t

1O~e2,ee2t/(etmi
)!. ~5.1!

The use of Eq.~3.9! in the rhs stresses that the effectiv
adimensional expansion parameter isel2: the range of reli-
ability of first order perturbation theory is compressed toe
<l22/10. As mentioned in Sec. III, in the limitt going to
infinity, one expects the time quantities to be stationary.
such a case, the derivative with respect to the variables can
be interchanged with the derivative with respect tot and one
can use the equations of motion to evaluate Eq.~5.1!. A
direct differentiation with respect tos is consistently taken
with respect to the system of stochastic differential equati
conjugated by time reversal of equations~2.1!–~2.3!. The
latter operation in general requires knowledge of the pr
ability density of the forward in time problem. In the statio
ary limit, the time reversal operation for the OU proce
reduces to the inversion of the sign of the drift term as in
deterministic case. After slightly more lengthy algebra, t
result is equal to the differentiation with respect tot with
opposite sign.

The computations in the general case are very cum
some~see Appendixes C, D, and E!. It is convenient to ex-
emplify the procedure in the simpler case of the second o
correlation. There are four contributions to ReF m

(2) :

d

dt
GN1m11,N1m;N1m,m11

(2) ~ t,s!u t5s50,

d

dt
GN1m11,N1m11;N1m,m

(2) ~ t,s!u t5s

52kkm11
2 Cm

(2)~ t !1^Q̇N1m~ t !Qm~ t !&,
~5.2!

d

dt
GN1m,N1m11;N1m,m11

(2) ~ t,s!u t5s50,

d

dt
GN1m,N1m;N1m11,m11

(2) ~ t,s!u t5s

52kkm
2 Cm

(2)~ t !1^Q̇N1m11~ t !Qm11~ t !&.
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FIG. 3. First order corrections toH(4) with
~dashed line! and without inclusion of second
neighbor interactions are plotted versus the turb
lence exponent. The inclusion of second neighb
couplings increases the intensity of the anoma
ct
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By definition

^Q̇N1m~ t !Qm~ t !&5
1

2

d

dt
^uum~ t !u2&,

^Q̇N1m11~ t !Qm11~ t !&5
1

2

d

dt
^uum11~ t !u2&.

The time derivative of ReFm21
(2) is derived by a simple index

shift. Since the terms nondiagonal in the resolventR indices
are zero, the second moment inertial operator is not affe
by first order perturbation theory. The result is not surprisi
The second moment has only one free index. Hence at
order of perturbation theory only global coupling can be g
erated, which is forced by the symmetries of the model to
consistent with a normal scaling of the zero mode. Moreov
the Qm components of the scalar evolve only through t
coupling with their complex conjugatedQN1m’s: their varia-
tion is a second order effect ine. The only possible nonzero
corrections are viscous and can be consistently neglecte

Let us now draw the general picture whenv is larger than
one. Once again, the phase symmetries~2.14!, and the fact
that when ReFm1 , . . . ,mi , . . . ,mv

(2v) is known all other terms are

yielded by index shift or exchange operations, prevent
corrections to the global couplings from affecting the scal
properties: the resulting global sectors of inertial operat
have a normal scaling zero mode. This is in agreement w
the observation made in@12#, where the dependence of th
scaling exponents on the time correlation for generali
models of passive scalar advection is predicted to app
only through anomalies. The corrections to the purely sh
range couplings are therefore the relevant ones. They o
in two ways. On one hand, new terms of ordere show up in
the purely self- and nearest-neighbor interactions. On
other hand, terms proportional todmi ,mj 62 appear. The latter
are the most dangerous, for they in principle perturb the lo
of the white noise closure by introducing new independ
equations, hence the need for more renormalization cons
in the nondiagonal sector of the moments. Nevertheless,
can arguea priori in the spirit of the renormalization grou
@25#, only the nearest neighbors interactions are relevant
scaling. Hence first order corrections can be obtained all
ing an e dependence in the renormalization constant of
white noise closure and determining the first order coe
cient of their Taylor expansion. Moreover, forv larger than
ed
.
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2, such a strategy is already able to take into account
corrections due to the purely second neighbor interaction

Let us analyze in more detail the case ofCm,n
(4) . The white

noise closure is perturbed by introducing ane dependence
into the renormalization constants

Cm1n,m1n
(4) 5z~e!2nCm,m

(4) , ~5.3!

Cm1n,m
(4) 5x~e!ln21

2H(2)Cm,m
(4) . ~5.4!

The marginal scaling in the nondiagonal sector in Eq.~5.4! is
assumed to stay universal as it is forC(2) while thee depen-
dence is stored in the prefactor. The diagonal exponen
then determined up to first order as

H~4,e!5
ln~z!

ln~l!
1el2

z8

l2z ln~l!
, ~5.5!

wherez8 is the derivative ofz at e50 yielded by the pertur-
bative solution of the system

(
p,q

@ I m,m;p,q
(4;0) 1eI m,m;p,q

(4;1) #Cp,q
(4)~e!50,

~5.6!

(
p,q

@ I m,m21;p,q
(4;0) 1eI m,m21;p,q

(4;1) Cp,q
(4)~e!50.

The correction tor4 due to time correlation increases th
anomaly leading to a slower decay of the diagonal mome
For negativez8 ~see Fig. 3! the overall anomaly is

r4~e!5~22j!2
ln~z!

ln~l!
1Uel2

z8

l2z ln~l!
U . ~5.7!

In the range of reliability of first order perturbation theo
the effect is very small: forel2'O(1021) the prediction is
a correction amounting to the 3% of the white noise exp
nentH(4). Theperturbative scheme just proposed does
take into account the emergence of pure second neigh
interactions. In order to weight their relevance for the dia
onal scaling and simultaneously to check the hypothesis
normal scaling for the marginal scaling in Eq.~5.4!, one can
relax the closure in order to encompass the equation
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(
p,q

@ I m,m22;p,q
(4;0) 1eI m,m22;p,q

(4;1) #Cp,q
(4)~e!50, ~5.8!

which describes the independent~in the sense stated abov!
second neighbor interaction. Consistency with the wh
noise theory compels the latter equation to decouple whee
is set to zero. The requirement is satisfied if the closure
chosen in the form

Cm1n,m
(4) 5x~e!q~e! [(n21)(n22)]/2k(n21)2H~2!Cm,m

(4) .
~5.9!

The prefactorq(e) [(n21)(n22)]/2 forcesq(0) to be a function
of the white noise renormalization constants. Were the w
noise closure exact, it would fix the value ofq(0) to one.

In Fig. 4 q(0) is plotted versusj: through the entire
physical range it stays close to one with a maximal deviat
on the order of 4% forj equal to22. Moreover, as shown
in Fig. 3, the time-correlation-induced correction toH(4,e)
when Eq.~5.8! is included has the same qualitative behav
and is quantitatively very close to the nearest neighbor p
diction. The result is ana posterioricheck of the robustnes
of the closure approach. It confirms that first order corr
tions can be extracted within the logical scheme of the z
order one. It follows that the equations specifying the z
modes of the inertial operator acting on the sixth mom
~see Appendix D! can be closed by assuming

Cm1n,m1n,m1n
(6) 5z~e!2 lCm,m,m

(6) ,

Cm1n,m1n,m
(6) 5x1~e!kn21

2H(4,e)Cm,m,m,m
(6) ,

~5.10!
Cm1n1p,m1n,m

(6) 5x3~e!kp21
2H(2)kn21

2H(4,e)Cm,m,m,m
(6) ,

Cm1n,m,m,m
(6) 5x2~e!kn21

2H(2)Cm,m,m,m
(6) .

The exponentH(4,e) is known perturbatively from Eq.~5.5!,
while H(2) is universal. With the same rationale~Appendix
D! one can evaluateH(8,e).

In Fig. 5 the analytic predictions for the corrections to t
scaling exponents are summarized. In all cases the co
tions are negative, i.e., they carry a positive contribution

FIG. 4. Renormalization constantq(0) is plotted versusj. It
remains close to one through the entire physical range, pro
self-consistent the conjecture of normal scaling for the nondiago
sector of the fourth moment. The result stresses that the renor
ization of nearest neighbor interactions provides an accurate fra
work in which to extract the scaling exponent.
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r2v . The corrections increase withv, the rate of growth
being slightly slower than theD(2v)}v(v21)D(4)/2 pre-
dicted in @12# for time-correlation-generalized PDE Kraich
nan models.

Within the range of first order perturbation theory, th
overall effect of time correlation is seen to enhance interm
tency. An intuitive understanding of the phenomenon mig
be obtained by interpreting the time correlation as a mec
nism by which to increase the probability of coherent flu
tuations of the scalar field. The latter are rare events fel
the tail of the probability density of the scalar field as e
treme deviations from the Gaussian behavior of the typ
events.

VI. NUMERICAL EXPERIMENTS

Resorting to numerical experiments has a double mot
tion. On one hand, they can be used to test the predict
from the first order perturbation theory. On the other ha
they provide a broader scenario of the features of the mo
beyond the grasp of perturbative approaches. The first tas
far from being easy because a quantitative check of per
bation theory requires measurements of the scaling ex
nents within an accuracy smaller than 2%.

The main feature of the inertial range is the conservat
of the scalar energy. From the analytical point of view, this
seen in the noncommutativity of the terms associated w
the multiplicative noise,Bg in Eq. ~2.10!. This property rules
out the use of a simple Euler scheme, which can be app
in the case of delta-correlated noise. In the case of w
noise advection the multiplicative structure of the noise E
~2.10!, which is interpreted in the Stratonovich sense, can
mapped into the corresponding Itoˆ equations. The advantag
is that the diagonal nonzero average part of the noise is
plicitly turned into an effective drift term@26#. The nondi-
agonal terms in the Taylor expansion of the scalar fieldQ are
of the order three halves indt, which are neglected in the

g
al
al-
e-

FIG. 5. First order correction toH(4) ~continuous line!, H(6)
andH(8) versus the turbulence parameterj. In the last two cases
the corresponding linear systems are solved numerically. In
cases the corrections are derived by perturbing the white noise
sure renormalization constants. The effect of time correlation
seen to add a negative correction to the scaling exponents, h
lighting an increase of intermittency.
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Euler scheme. This procedure becomes meaningless f
time-correlated noise. There, ordinary calculus holds and
the Taylor expansion ofQ both diagonal and nondiagona
products of the noise are of the same order indt. Moreover,
the algorithm to be used must tend smoothly to a white no
limit, so that the same relative error is preserved indep
dently of the value ofe.

Following Burrage and Burrage@27#, a reliable way out of
the stated difficulties is to adopt the Trotter-Lie-Magnus f
mula to integrate the equations of motion to first order. F
each time incrementdt, Eq. ~2.10! is solved in exponentia
form. Fast matrix exponentiation algorithms are provided
the packageEXPOKIT @28#.

To generate the correlated noise, the exact method
scribed by Miguel and Toral@29# is used. This method en
sures that the noise is accurate down to the limite→0.

The time scale relevant to measuring the convergenc
the solution is the slowest time scale in the system, nam
the eddy-turnover time of the first shell estimated as
maximum betweenet1 and t1. As shown in Fig. 6, more
thanNt510 000 eddy-turnover times are needed to achiev
converged solution for the sixth order structure function. T
time step is set by the fastest time scale in the system, w
is the one with the largest shelletM . The number of itera-
tions (N) needed to achieve convergence is then fore less
than one:

N~ iterations!5
NttM

et1
5

Nt

e
l (M21)(12j/2), ~6.1!

which shows that the number of iterations needed grows
1/e, making it difficult to get close to the white noise lim
using the same algorithm.

The scaling of the diagonal moments of higher order
been extracted by means of extended self-similarity@30#,
where thepth order structure function is plotted versus t
second order one, which is assumed to be normal. The s
ing is found as the average slope of the logarithmic deri
tives in the inertial range.

We considered a system with 25 shells with wave nu
bers increasing as powers ofl52, with viscosity k55

FIG. 6. The convergence of the sixth order structure function
e51. Shown iŝ uum

6 u&(t) for m58. The fast upward changes an
slow downward relaxations reveal the intermittent nature of
signalum58

6 (t).
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31029. This choice ensures that there are several shell
the dissipative range. We focused on the results forj equal2

3

~Kolmogorov scaling!.
In Fig. 7, the normalized structure functions^uum

p u&km
H(p)

are shown. The quality of the scaling is demonstrated by
fact that the moments show scaling over a wide range
scales.

A summary of the numerical experiments is given in F
8, where the scaling exponents are plotted versus the ord
the moments of the scalar field for different values ofe. It is
evident that the anomaly grows as the time correlation
creases.

When turning to the interpretation of the results in mo
detail, the uncertainty in the extraction of the scaling has
be kept in mind. For the sixth moment this uncertainty turn
out to be on the order of 4%. The changes in the sca
between different values ofe is also on the order of a few
percent. This seems to exclude a proper resolution in
numerics to compare the results with the analytical pred
tions from the perturbation analysis. However, the results
different values ofe can still be compared with some confi
dence, since the relative uncertainty between the differ

r

e

FIG. 7. An example of the scaling of the structure functions
e52.0. The plot shows the structure functions normalized by
fitted scalingkm

H(p) to make the scaling regime appear as horizon
lines. The lower line is forp51, and the upper line isp58. Each
line is offset to make it possible to distinguish the lines from ea
other.

FIG. 8. Anomalous part of the structure functionsH(p)2p/3 as
a function ofp for e50.01 toe52. The lines correspond to~from
the top!: e50.01, 0.02, 0.10, 0.25, 1.0, and 2.0. The dashed
corresponds to normal scaling.
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runs is much smaller than the absolute uncertainty. T
means that the slope of, e.g., the sixth order structure fu
tions versuse will be well resolved, while the absolute va
ues can be shifted up and down a few percent.

In Fig. 9 the analytical prediction of the exponents
compared with the result of the numerics. The theoret
prediction for smalle ~see inset of Fig. 9! is below the nu-
merical points, which is due to the absolute uncertainty
explained above. The slope is the same for the analyt
calculation and the numerics, giving credibility to the resu
of the perturbation analysis. It should be noted that the ef
of time correlation on the anomaly is quantitatively qu
small even in the nonperturbative range whene is equal to
one (el254).

The global picture provided by the numerical experime
is thatH(2v) is seen to be a nonlinear function ofe which,
after rapid initial decrease in the perturbative range, displ
a much slower rate of variation. An interesting question
whether or not there is a limiting value of the scaling of t
structure function ase@1. However, the quality of the nu
merics does not allow us to answer this question.

VII. CONCLUSION

We have presented a shell model for the advection o
passive scalar by a velocity field which is exponentially c
related in time. We developed a systematic procedure to
culate the exponents of the correlation of the diagonal m
ments ~the structure functions!. For the delta-correlated
velocity we find good agreement between analytical and
merical calculations up to the eighth order. We presented
analytical perturbative theory to compute the correction
the scaling exponents due to the exponentially correlated
locity field.

The occurrence of anomalies in the exponents of the
agonal moments of the scalar and their nonuniversality v
sus the intensityel2 of the time correlation is related to th
presence of pure short range couplings in the correspon
inertial operator, which provide for nontrivial scaling of th
zero modes. In the absence of such short range coupling

FIG. 9. Scaling of the sixth order structure function versusel2.
The inset shows an enlargement of the perturbative rangeel2!1
where the analytical prediction from first order perturbation the
can be compared with the numerical experiments.
is
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as

is the case for the second moment, normal scaling wo
take place independently of the value ofel2.

The behavior of the anomalous exponents in the nonp
turbative regime was studied numerically. This was found
be a nonlinear monotonic function ofel2, decreasing at a
rate much slower than in the perturbative regime. It is th
clear that the addition of the time correlation to the advect
velocity field enhances the anomalous scaling. The anom
found in the present study is still much smaller than th
found when the passive scalar is driven by a turbulent ve
ity field driven by Navier-Stokes turbulence or by a sh
model for the velocity field@13#. This indicates that the non
Gaussian nature of the real turbulent velocity field plays
significant role in the strong anomalous scaling observed
real passive scalars.
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APPENDIX A: STOCHASTIC INTEGRATION
BY PARTS FORMULA

A heuristic proof of the stochastic integration by pa
formula is provided. For a rigorous treatment, see@15,16#.
Let z t be a stochastic process whose realizations are defi
as the solution of the Itoˆ stochastic differential equation
~SDE!:

ẋt5b~xt ,t !1s~xt ,t !h t , xtu t505x0 , ~A1!

where h t is white noise. Letz t
e be the stochastic proces

specified by

ẋt5b~xt ,t !1eh~xt ,t !s~xt ,t !1s~xt ,t !h t xtu t505x0 .
~A2!

For equale the two SDE’s coalesce: Eq.~A2! can be derived
from Eq. ~A1! under the variation of the white noiseh t
→h t1h(xt ,t). The integration by parts formula states th
for any smooth functionalf the following identity holds:

K d

de
f ~z t

e!L
z

t
eU

e50

5K f ~z t!E
0

t

ds h~zs ,s!L
z t

, ~A3!

where^ &z t
denotes the expectation values with respect to

measure induced byz t . In order to prove it, let us observ
that the transition probability density for Eq.~A2! can be
written formally as a path integral~Itô discretization!:

y
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phe~x,tux0,0!5E
x0

xt5x

Dx e2Sz(x,tux0,0)1 E0
t dt8$[ ẋt82b(xt8)/s(xt8 ,t8)] eh(xt8 ,t8)2(e2/2)h2(xt8 ,t8)%,

~A4!

Sz~x,tux0,0!5E
0

tdt8

2 F ẋt82b~xt8!

s~xt8 ,t8!
G 2

.

ro

s

ea
ig

er-
ing

is
e
ent

n-
If one introduces the functional

M ~z t
e!5e2*0

t dt8$[ ẋt82b(xt8 ,t8)/s(xt8 ,t8)] eh(xt8 ,t8)2(e2/2)h2(xt8 ,t8)%,
~A5!

one has by construction

d

de
^M ~z t

e! f ~z t
e!&z

t
e50. ~A6!

To each realization of the solutions of Eq.~A2! there is a
corresponding mappingh t→xt5x(t,h t ,e). Hence the last
equality can be rewritten as the white noise average:

d

de
^M „x~ t,h t ,e!…f „x~ t,h t ,e!…&h t

50, ~A7!

which implies Eq.~A3! whene is set to zero. The derivative

d

de
f ~z t

e!ue505Dz t]z t
f ~z t! ~A8!

is a Fréchet derivative. The dynamics of the stochastic p
cessDz t is linear once the realizationsxt of z t are known:

yt[Dxt

~A9!

ẏt5yt]xt
@b~xt ,t !1s~xt ,t !h t#1h~xt ,t !s~xt ,t !.

It is worth noting that forb50, s5h51, the integration by
parts formula~A3! reduces to

t^]wt
f ~wt!&5^ f ~wt!wt&, ~A10!

which is the Gaussian integration by parts formula~see, e.g.,
@1#! applied to the Wiener processN(0,t).

The generalization to a multidimensional complex ca
proceeds straightforwardly by introducing 2N variational pa-
rameters$e i ,e i* % i 51

2N and applying the definitions

^hm~ t !hn* ~s!&52dmnd~ t2s! ~A11!

for the white noise correlations.

APPENDIX B: STOCHASTIC INTEGRATION BY PARTS
FOR THE OU PROCESS

As in the above appendix, we limit ourselves to the r
case, the generalization to the complex case being stra
-

e

l
ht-

forward. Functional differentiation is formally derived from
a Fréchet derivative withh(xt ,t)5d(t2s), wheres is a pa-
rameter specifying the time when the white noise is p
turbed. The variation is assumed to be nonanticipat
~causal!:

lim
s↑t
E

0

t

ds8d~s2s8!50. ~B1!

Let us consider the system of SDE’s

ẋm5bm~x!1 (
n51

2

sm,n~x!cn~ t !, ~B2!

wherec is the colored noise:

cn~ t !5E
0

t

ds8
e2(t2s8)/(etn)

eAtn

hn~s8!. ~B3!

Functional differentiation gives

d

dt
~Dl

sxm!5 (
k51

N

Dl
sxkF ]kbm~x!

1]k(
n51

N

sm,n~x!E
0

t

ds8
e2(t2s8)/(etn)

eAtn

hn~s8!G
1

e2(t2s)/(et l )

eAt l

sm,l~x!. ~B4!

The functional derivative is fully specified when its form
known at the times when the variation of the white nois
occurs. The latter is determined by the causality requirem

d

dt
„Dl

scn~ t !…5F ] t

e2(t2s)/(etn)

eAtn

1
1

eAtn

d~ t2s!Gdn,l ,

~B5!

which implies that the variation of the colored noise is no
zeroonly immediately after the instantaneous kick

Dl
scn~ t !5

e2(t2s)/(etn)

eAtn

dn,l , ;t>s. ~B6!

By differentiating~B4! one finds
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d2

dt2
~Dl

sxm!5
e2(t2s)/(et l )

eAt l

sm,l~x!d~ t2s!1smooth terms.

~B7!

From the last equation it emerges that fort5s

d

dt
~Dl

sxm!u t5s5
1

eAtn

sm,l~x!. ~B8!

Consistency with Eq.~B4! then requires that the variation o
the x’s associated with a nonanticipating variation of t
white noise at times fulfills the initial condition

Dl
sxm~s!u t5s50. ~B9!

The integration by parts formula~A3! for a smooth func-
tional O(x) is

^O~xt!cn~ t !&5E
0

t

ds8
e2(t2s8)/(etn)

eAtn
(
l 51

N

^Ds8xl]xl
O~xt!&.

~B10!

The variation is the solution of the linear problem~B4! of
which we defineR to be the fundamental solution. It follow
that

^O~xt!cn~ t !&5E
0

t

ds
e2(t2s)/(etn)

e E
s

t

ds8
e2(s82s)/(etn)

e

3(
l 51

N

(
m51

N

^@]xl
O~xt!#Rl ,m~ t,s8!sm,n~xs8!&.

~B11!

Finally, inverting the order of integration one obtains
^O~xt!cn~ t !&5E
0

t

ds8
e2(t2s8)/(etn)2e2(t1s8)/(etn)

2e

3(
l 51

N

(
m51

N

^@]xl
O~xt!#Rl ,m~ t,s8!sm,n~xs8!&.

~B12!

This proves the real version of formula~3.1!.

APPENDIX C: THE FOURTH ORDER CORRELATION
TO FIRST ORDER

The inertial operator acting on the fourth momentCm,n
(4) (t)

is in the large time limit

F rhs5I m,n;p,q
(4,0) Cp,q

(4)

22km11
2 dmE

0

t

ds e2(t2s)/(etm)
d

ds
ReFm,n

(4) ~ t,s!

1km
2 dm21E

0

t

ds e2(t2s)/(etm21)
d

ds
ReFm21,n

(4) ~ t,s!

2kn11
2 dnE

0

t

ds e2(t2s)/(etn)
d

ds
ReFn,m

(4) ~ t,s!

1kn
2dn21E

0

t

ds e2(t2s)/(etn21)
d

ds
ReFn21,m

(4) ~ t,s!.

~C1!

The bidimensional matrixI m,n;p,q
(4,0) is the white noise linear

inertial operator. The corrections to the white noise the
are generated by the time derivative at equal times of
integrand function ReFn,m

(4) :
Fm,n
(4) ~ t,s!5̇^QN1m~ t !QN1n~ t !Qn~ t !RN1m11,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1n~ t !Qn~ t !RN1m11,N1m11~ t,s!Qm~s!#&

1^QN1m11~ t !QN1n~ t !Qn~ t !RN1m,N1m~ t,s!Qm11~s!#&

2^QN1m11~ t !QN1n~ t !Qn~ t !RN1m,N1m11~ t,s!Qm~s!#&

1^QN1m~ t !QN1m11~ t !QN1n~ t !Rn,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1m11~ t !QN1n~ t !Rn,N1m11~ t,s!Qm~s!#&

1^QN1m~ t !QN1m11~ t !Qn~ t !RN1n,N1m~ t,s!Qm11~s!#&

2^QN1m~ t !QN1m11~ t !Qn~ t !RN1n,N1m11~ t,s!Qm~s!#&. ~C2!

After a double integration by parts neglecting viscous contributions, one gets into
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(
p,q

~ I m,n;p,q
(4;0) 1eI m,n;p,q

(4;1) !

2
Cq,p

(4)

5S 2
l2

t211m
2

l2

tm
2

l2

tn
2

l2

t211n
1

7el4

t211m
1

7el4
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t211n
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(4) 1S l2

tn
2

el4

t11n
2

2el4

t211m
2

2el4

tm
2

7el4

tn
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(4) 2
4el4
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t221m
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(4) 2S 3el4

t221m
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(4) S 2
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3el4
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DCm12,m11
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tm
1

el4

t11m
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1dn,m22F S 2

el4
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3el4

t221m
2

el4

t211m
DCm21,m22
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el4

t211m
DCm,m22

(4) G . ~C3!

The diagonal scaling exponent is derived up to first order ine resorting to linear perturbation theory. If pure second neigh
interactions are taken into account, the constantq(0) is specified by

q~0!5
12~11l22H(2)1l2H(2)!z~0!

z~0!1z~0!2l23H(2)
. ~C4!

The result is approximately equal to one for allj ranging between@0,2#. The first order correctionz8(0) is extracted from the
solution of the linear system:

„4l21H(2)14l2z~0!…x8~0!14l2x~0!z8~0!

524l412H(2)x~0!14l42H(2)x~0!z~0!14l212[12H(2)]x~0!z~0!2

12l4
„924x~0! 1@4222x~0!#z~0!…12l41H(2)

„41@9224x~0!#24x~0!z~0!…,
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@l2~232l2H(2)2lH(2)!z~0!1l222H(2)z~0!2#x8~0!1@l21~232l2H(2)2lH(2)!x~0!l212l222H(2)x~0!z~0!#z8~0!

5213l423l41H(2)13l41H(2)~21l2H(2)!x~0!213l4z~0!23l42H(2)z~0!

1l4
„4222l22H(2)17l2H(2)19lH(2)1q~0!…x~0!z~0!

1l4x~0!z~0!2@1210l22H(2)1„2112q~0!…l23H(2)1„312q~0!…l2H(2)#

1l424H(2)q~0!x~0!z~0!3,

l22H(2)x~0!@122z~0!„12q~0!13l22H(2)q~0!z~0!1l22H(2)1l2H(2)
…#z8~0!

1l22H(2)z~0!@12z~0!„11l22H(2)1l2H(2)2q~0!

1l22H(2)q~0!z~0!…#x8~0!1l22H(2)z~0!2@x~0!1l22H(2)x~0!z~0!#q8~0!

52l41H(2)~211l23H(2)24l22H(2)22l2H(2)!x~0!z~0!1l42H(2)z~0!216l212(12H(2))x~0!z~0!2

22l424H(2)q~0!x~0!z~0!22l4
„11q~0!…x~0!z~0!22l423H(2)

„2712q~0!…x~0!z~0!2

1l42H(2)
„227q~0!1q~0!3

…x~0!z~0!212l42H(2)~11l22H(2)!x~0!z~0!3

2l42H(2)
„21l24H(2)17l3H(2)1l412l4~11l2H(2)!z~0!12lH(2)

…q~0!x~0!z~0!3

12l422H(2)~11l23H(2)!q~0!3x~0!z~0!31l426H(2)q~0!3x~0!z~0!4. ~C5!

APPENDIX D: THE INERTIAL OPERATOR FOR THE SIXTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

Under the hypothesis that pure second neighbor interactions do not require new equations to specify the diagonal s
small values ofe, there are only four equations describing how global coupling is renormalized by relevant pure shor
interactions. Given themth shell, one has
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t211m
C211m,211m,m

(6) 1
9el4

t11m
Cm,m,21m

(6) 1
9el4

t221m
Cm,m,221m

(6) ,

05 (
p,q,r

@ I m,m,m21;p,q,r
(6;0) 1eI m,m,m21;p,q,r

(6;1) #Cp,q,r
(6)

5S l2

t211m
2

5el4

tm
2

23el4

t211m
DCm,m,m

(6) 1S 10el4

t211m
1

15el4

tm
DCm,m,11m

(6)

2S l2

t221m
1

2l2

tm
1

7l2

t211m
2

17el4

t221m
2

40el4

tm
2

169el4

t211m
DCm,m,211m

(6)

1S 4l2

tm
2

4el4

t11m
2

8el4

t221m
2

36el4

t211m
2

96el4

tm
DC211m,m,11m

(6) 1S 4l2

t211m
2

8el4

tm
2

12el4

t221m
2

124el4

t211m
DC211m,211m,m

(6)

1S 8el4

t211m
1

8el4

tm
DC211m,211m,11m

(6) 1
8el4

tm
C11m,11m,211m

(6) 1
8el4

t211m
C211m,211m,211m

(6)

1S 12el4

t211m
1

24el4

t221m
DC221m,211m,m

(6) 1S l2

t221m
2

el4

t231m
2

4el4

tm
2

6el4

t211m
2

17el4

t221m
DCm,m,221m

(6)

1S 8el4

t221m
1

8el4

tm
DC221m,m,11m

(6) 1
4el4

t11m
C211m,m,21m

(6) 1
el4

t231m
Cm,m,231m

(6) ,
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(
p,q,r

@ I m,m21,m21;p,q,r
(6;0) 1eI m,m21,m21;p,q,r

(6;1) #Cp,q,r
(6)

5
8el4

t211m
Cm,m,m

(6) 1S 4l2

t211m
2

8el4

t221m
2

12el4

tm
2

124el4

t211m
DCm,m,211m

(6) 1S 12el4

t211m
1

24el4

tm
DC211m,m,11m

(6)

2S l2

tm
1

2l2

t221m
1

7l2

t211m
2

17el4

tm
2

40el4

t221m
2

169el4

t211m
DC211m,211m,m

(6)

1S l2

tm
2

4el4

t221m
2

6el4

t211m
2

17el4

tm
2

el4

t11m
DC211m,211m,11m

(6)

1S l2

t211m
2

5el4

t221m
2

23el4

t211m
DC211m,211m,211m

(6) 1S 8el4

t221m
1

8el4

t211m
DCm,m,221m

(6)

1S 15el4

t221m
1

10el4

t211m
DC211m,211m,221m

(6) 1S 4l2

t221m
2

4el4

t231m
2

8el4

tm
2

36el4

t211m
2

96el4

t221m
DC221m,211m,m

(6)

1
el4

t11m
C211m,211m,21m

(6) 1S 8el4

t221m
1

8el4

tm
DC221m,211m,11m

(6) 1
8el4

t221m
C221m,221m,m

(6) 1
4el4

t231m
C231m,211m,m

(6) ,

(
p.q,r

@ I m,m11,m21;p,q,r
(6;0) 1eI m,m11,m21;p,q,r

(6;1) #Cp,q,r
(6)

5S 2el4

t211m
1

2el4

tm
DCm,m,m

(6) 1S l2

t211m
2

2el4

t11m
2

12el4

tm
2

22el4

t211m
DCm,m,11m

(6)

1S l2

tm
2

2el4

t221m
2

12el4

t211m
2

22el4

tm
DCm,m,211m

(6) 1S 3el4

t211m
1

6el4

tm
DC11m,11m,m

(6)

1S 3el4

tm
1

6el4

t211m
DC211m,211m,m

(6) 2S l2

t221m
1

l2

t11m
1

4l2

t211m
1

4l2

tm
2

18el4

t221m
2

18el4

t11m
2

84el4

t211m
2

84el4

tm
DC211m,m,11m

(6)

1S l2

tm
2

2el4

t221m
2

3el4

t211m
2

3el4

t11m
2

20el4

tm
DC11m,11m,211m

(6)

1S l2

t211m
2

2el4

t11m
2

3el4

t221m
2

3el4

tm
2

20el4

t211m
DC211m,211m,11m

(6)

1S 3el4

tm
1

6el4

t11m
DC211m,11m,21m

(6) 1S 3el4

t211m
1

6el4

t221m
DC221m,211m,11m

(6)

1S 2el4

t211m
1

2el4

t11m
DC211m,211m,21m

(6) 1S 2el4

t211m
1

2el4

t11m
DCm,m,21m

(6) 1S 2el4

t221m
1

2el4

tm
DCm,m,221m

(6)

1S 2el4

t221m
1

2el4

tm
DC11m,11m,221m

(6) 1S l2

t221m
2

el4

t231m
2

2el4

t11m
2

3el4

t211m
2

8el4

tm
2

18el4

t221m
DC221m,m,11m

(6)

1S l2

t11m
2

el4

t21m
2

2el4

t221m
2

3el4

tm
2

8el4

t211m
2

18el4

t11m
DC211m,m,21m

(6) 1S 2el4

t221m
1

2el4

t11m
DC221m,m,21m

(6)

1
el4

t21m
C211m,m,31m

(6) 1
el4

t231m
C231m,m,11m

(6) . ~D1!
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APPENDIX E: THE INERTIAL OPERATOR FOR THE EIGHTH MOMENT OF THE CORRELATION
UP TO FIRST ORDER

The set of independent equations is finally given as

(
p,q,r ,s

@ I m,m,m,m;p,q,r ,s
(8;0) 1eI m,m,m,m;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m,m21;p,q,r ,s
(8,0) 1eI m,m,m,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m21,m21;p,q,r ,s
(8,0) 1eI m,m,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m,m11,m21;p,q,r ,s
(8,0) 1eI m,m,m11,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

~E1!

(
p,q,r ,s

@ I m,m21,m21,m21;p,q,r ,s
(8,0) 1eI m,m21,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m21,m21;p,q,r ,s
(8,0) 1eI m,m11,m21,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m11,m21;p,q,r ,s
(8,0) 1eI m,m11,m11,m21;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50,

(
p,q,r ,s

@ I m,m11,m21,m22;p,q,r ,s
(8,0) 1eI m,m11,m21,m22;p,q,r ,s

(8;1) #Cp,q,r ,s
(8) 50.

The closure is provided again assuming scaling for all the possible conditioned expectation values with respect to a giv
It follows that

Cm1n,m1n,m1n,m1n
(8) 5z~e!2 lCm,m,m,m

(8) ,

Cm1n,m1n,m1n,m
(8) 5y1~e!kn21

2H(6,e)Cm,m,m,m
(8) ,

Cm1n,m1n,m,m
(8) 5y2~e!kn21

2H(4,e)Cm,m,m,m
(8) ,

Cm1n,m,m,m
(8) 5y3~e!kn21

2H(2)Cm,m,m,m
(8) ,

Cm1n1p,m1n,m,m
(8) 5y4~e!kp21

2H(2)kn21
2H(4,e)Cm,m,m,m

(8) ,
~E2!

Cm1n1p,m1n,m1n,m
(8) 5y5~e!kp21

2H(2)kn21
2H(6,e)Cm,m,m,m

(8) ,

Cm1n1p,m1n1p,m1n,m
(8) 5y6~e!kp21

2H(4,e)kn21
2H(6,e)Cm,m,m,m

(8) ,

Cm1n1p1q,m1n1p,m1n,m
(8) 5y7~e!kq21

2H(2)kp21
2H(4,e)kn21

2H(6,e)Cm,m,m,m
(8) .
s.
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